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Abstract 

Using commonly available hardware and software, we present a proxy scheme for IP over 

Ethernet networks that provides a fault-tolerant solution without the need for modification of 

existing networking equipment. This type of fault-tolerant reconfigurable Ethernet-based proxy 

(FREP) is transparent to current applications and provides full redundancy with minimal packet 

loss and fast reconfiguration times. A prototype implementation yielded a reconfiguration time 

of 1.55 sec. Used in conjunction with optimized dynamic routing protocols, an average recovery 

time of 3 seconds can be seen. The proposed proxy scheme can be deployed in any network 

based on a topology that allows two connections between a subnet and the backbone. The 

solution relies on a dynamic routing protocol to provide backbone level routing around the 

malfunctioning inter-network link. 
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1. Introduction 

Inexpensive and widely available hardware has made Ethernet one of the most widely used link 

layer protocols in today’s IP networks [1]. Fault tolerance, however, still remains a major issue 
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in IP over Ethernet networks. IP networks built on Ethernet technology can typically be 

constructed using bus, star, or tree topologies. These topologies inherently allow for 

uninterrupted network service during the addition, removal, or failure of network nodes. They do 

not, however, provide a redundant connection to parent networks in a subnetted environment. 

This lack of fault tolerance prevents Ethernet-based IP networks from being used in situations 

that require a high-availability network solution.  

A number of redundancy schemes for Ethernet networks have been designed and tested 

over the past few years [2, 3, 4]. Most of these designs, however, require modification of 

networking equipment (switches, hubs, NICs, etc.) or require software modification of the 

individual network nodes. We present an approach that focuses on a simple design mated with a 

specific, but flexible network topology. With this design, we have attempted to create a “plug-in” 

solution to typical IP over Ethernet networks that provides transparent redundancy with a 

minimal traffic footprint. We have focused on a design that is capable of being applied to 

unmodified, off-the-shelf hardware and 

software.  

In a star topology or tree topology-

based network, a parent network is accessible 

to its subnets via a single router. Modern 

standards such as the FDDI protocol address 

this issue; these technologies, however, often 

require expensive hardware and complex 

configurations. An Ethernet-based IP network 

can also be provided multiple connections to a parent network by mating the typical star 

 

Figure 1 A hybrid star-ring topology 



topology to a central ring-shaped backbone as shown in Fig. 1. Although the central ring is not a 

necessary component to our redundancy scheme, it is one of the most widely used WAN 

backbone topologies as well as one of the most practical methods of providing two connections 

to an Ethernet subnet from the backbone. The central ring provides two routes to the parent 

network from each star-shaped subnet. This type of configuration is typically not useful to an 

unmodified IP over Ethernet network, however. In order to take advantage of this network 

architecture, our design employs a fault-tolerant reconfigurable Ethernet-based proxy (FREP), 

which allows traffic to be forwarded to a backup router in the event of a primary router failure. 

This solution provides a redundant connection to the backbone with only the addition of the 

FREP device and without any modification of individual network nodes. The need for one FREP 

device per network also makes this an easily scalable solution. FREPs can be added only to 

networks that require fault-tolerance, while other networks remain unchanged.  

In this paper, we present a general overview of the design of the FREP as well as a 

detailed description of a prototype FREP implementation.  We also evaluate the performance of 

the FREP and discuss the configuration and resulting performance of three dynamic routing 

protocols when used with the FREP. 

2. Design Overview 

The design of the transparent redundancy scheme is based on a normally configured IP network. 

In the typical IP over Ethernet network, nodes on a specific subnet are unable to communicate 

with any “outside” nodes when the router acting as the default gateway for that particular subnet 

becomes unreachable. The proposed scheme uses the FREP to mimic the primary router for a 

particular subnet in case of a failure.  



The FREP plays no role in packet routing during normal operation, although it repeatedly 

polls the primary router to ensure connectivity. This mode of operation is illustrated in Fig. 2. If 

the primary router is determined to be unreachable the FREP assumes the router’s identity and 

transparently forwards all outbound packets to the backup router associated with that particular 

subnet. This “failover” mode of operation is shown in Fig. 3.  

Inbound traffic must also be routed properly into the subnets during times of a primary 

router failure. A dynamic IP routing protocol ensures that the routers constantly possess an 

accurate view of the network and that inbound packets are properly routed around the failed link. 

This “transparent proxy” design scheme ensures proper traffic flow into and out of individual 

subnets during failover operation without any modification of existing network hardware or 

software. 

While operating in failover mode, the FREP constantly listens for the presence of the 

primary router. Status of the connection to the primary router is monitored at the link layer to 

ensure minimal overhead. Once the primary router responds and is determined to be reachable 

 

Figure 2 FREP during normal operation monitors primary router for failure 



again, the FREP relinquishes control back to the router and normal routing of traffic into and out 

of the subnet is resumed. By using a link layer protocol, we are also able to implement a “flap 

detection” mechanism, which allows the FREP to maintain control of the router’s identity during 

times when the link is experiencing intermittent operation or “flapping”. 

3. Prototype Implementation 

The FREP was implemented using a Linux-based computer with two network interface cards and 

custom software to perform the failover operations. The software was written in C and is 

responsible for the control of the FREP. It is a user-space program that runs as a daemon. The 

following information is collected by the software upon initial execution: 

• IP address to assign to each network interface (eth0 and eth1) 

• The local subnet mask 

• IP address and hardware MAC address of the primary router 

• IP address of the backup router 

 

Figure 3 FREP in failover mode, assumes identity of failed router and forwards packets to 
backup router 



• A number of parameter values that affect the frequency of various actions performed by 

the FREP 

Once the values have been properly input, a configuration file is written for future use. The 

FREP then proceeds to perform connectivity checks to the primary router at specified intervals. 

If the primary router is determined to be unreachable, the FREP enters a failover mode in which 

it forwards all traffic destined for the primary router to a backup router. While in failover mode, 

the FREP also monitors the status of the primary router and relinquishes control once it becomes 

reachable again. All of the operations performed by the FREP are illustrated in Fig. 4. 

Figure 4 Sequence of operations performed by the FREP 



Testing and implementation of the FREP took place in a test bed network consisting of 

three subnet/router pairs. The network was designed using a hybrid star-ring topology as 

described in section 1. Netspec [5] software was used to place a load on the network during 

testing to more closely simulate a real-world network.  

3.1 Connectivity Checks 

The connectivity checks performed by the FREP consist of a connect() system call with a stream 

socket that points to the echo port1 of the router. The connect() call is set to time out after a 

specified interval. The timeout operation is achieved via synchronous I/O multiplexing by way of 

a select() system call. This method of attempting to establish a connection to the echo port 

ensures that the primary router is reachable via TCP traffic. Most hardware and software routers 

available today are configured with the echo service disabled. This type of configuration yields a 

“Connection refused” error upon a connection attempt and can be used to determine whether the 

router is reachable. Thus, connectivity to the primary router is verified if the FREP is either 

allowed to establish a connection or if it receives the “Connection refused” error. If the 

connectivity check succeeds the software continues to perform checks at the user-specified 

interval. Otherwise, the FREP enters failover mode and its network interfaces are reconfigured to 

mimic the router. 

3.2 “Failover” Mode 

Once the switch to failover mode occurs, the eth0 interface is assigned the IP address of the 

primary router. Since the primary router’s IP address is now associated with a different hardware 

MAC address, this change must be propagated throughout the network. This operation is 

                                                 
1 Port 7 is the IANA assigned port number of the echo service [6]. 



performed by sending a gratuitous ARP packet2 to the Ethernet broadcast address. This ensures 

that the ARP caches of all listening network nodes are updated with the new MAC address. At 

this point, all outbound packets sent to the primary router are now being delivered directly to the 

FREP. Once the packets are received by the FREP, a routing decision is made by the kernel. 

Since no static routes exist in the routing table, outbound packets are sent via the default route, 

which was inserted earlier. Thus, without changing the IP address of the router, all packets sent 

to the primary router on a particular subnet are now forwarded to a backup router via the 

transparent proxy. 

3.3 Recovery 

While operating in failover mode, the FREP constantly monitors the status of the primary router. 

The monitoring operation is performed by two separate processes spawned via a fork() system 

call. The child process is responsible for sending out ARP queries for the MAC address of the 

router at specified intervals. The ARP queries are sent via the low level packet interface of the 

Linux kernel and are constructed using the arphdr structure and addressed using a sockaddr_ll 

structure. The parent process listens for a response from the router using various methods from 

the pcap packet capture library [8]. Once a response is received, the child process is killed and 

control is returned to the caller. The FREP then relinquishes the router’s IP address and resumes 

performing TCP connectivity checks. 

4. Performance Analysis 

                                                 
2 A gratuitous ARP packet is an ARP request or reply that forces all listening nodes to update their ARP cache. The 
packet sender and target addresses are both set to the IP address of the cache entry that is to be updated; the sender 
hardware address is set to the hardware address to which the entry should be updated. [7] 
 



The performance of the FREP software and hardware is highly dependent upon the user defined 

parameters that are set in the program’s configuration file. The following parameters can be 

changed by the user and have a direct effect on the operating characteristics of the FREP:  

• Interval between TCP connectivity checks 

• Maximum allowed timeout of TCP connectivity check 

• Maximum number of failures allowed for TCP connectivity check before a switch to 

failover mode occurs 

• Interval between recovery checks (ARP requests for the primary router’s MAC address) 

By modifying these parameters the user has total control over the behavior of the FREP. If high 

availability, for example, is not an issue the interval between connectivity checks can be 

increased to a higher value. This setting prevents the FREP from frequently attempting to 

connect to the router, while still providing redundancy in the event of a failure. Thus, the trade-

off that the user is faced with is response time versus network overhead. Although the overall 

network footprint of the FREP device is minimal, performing frequent connectivity checks on a 

busy network may not be desired. 

Performance of the FREP was measured using the Tcpdump packet capture tool [9], 

which is available with most standard Linux distributions. The effects of a network failure and a 

recovery performed by the FREP device were observed using TCP, UDP, and ICMP traffic. All 

of these tests were performed using a 1 sec interval between TCP connectivity checks. It should 

be noted that increasing this parameter by a particular amount has the effect of increasing the 

minimum values reported here by that same amount.  

The time required for the FREP to complete the reconfiguration operation was measured 

as the time between the initial loss of connectivity to the primary router and the time of arrival of 



the first packet of traffic at the FREP. This time was measured to be 1.55 sec and is 

representative of the time required by the FREP to forward traffic to the backup router from the 

initial time of failure. It was observed, however, that the apparent interruption of network service 

to the local subnet was significantly greater and a result of the dynamic routing protocol 

employed to perform inter-network routing.  Section 5 details the tested routing protocols and 

how they can be optimized to provide a desirable failover period. The tests described here were 

performed in a testbed network that consists of three subnet/router pairs as shown in Fig. 1. By 

scaling down the network to a two router/subnet pair architecture, the 1.55 sec. reconfiguration 

time can be observed between any two nodes and is the “raw” reconfiguration rate of the FREP.  

5. Routing Protocol Analysis 

We evaluated three dynamic routing protocols, Routing Information Protocol (RIP), Open 

Shortest Path First (OSPF), and Enhanced Interior Gateway Routing Protocol (EIGRP) used in 

conjunction with our FREP. Although previous work exists in which routing protocols have been 

compared ([10], [11]), no comparisons of the protocols’ performances in response to a link 

failure in a small Ethernet-based network have been documented. Additionally, prior studies 

have generally employed simulation-based techniques and do not provide an experimental basis 

for the comparisons. 

 Each of the three above-mentioned dynamic routing protocols behaves differently upon 

detection of a failed link, and each has distinct advantages and disadvantages. Some comparisons 

of their performance and associated overhead traffic, however, can be made. Using test scripts 

and our FREP, we measured the duration of network outage after a link failure while running one 

of the aforementioned dynamic routing protocols.  



 Initial failover tests resulted in convergence times in the area of 40 seconds or more while 

using the OSPF dynamic routing protocol. The FREP was actively forwarding packets to the 

backup router after 1.55 seconds but the OSPF routing protocol was configured with the default 

settings of 40 seconds before a path is considered invalid.  Therefore, it took the backup router 

40 seconds to acknowledge that the path to the primary router was no longer valid.  By changing 

the various timing settings associated with each routing protocol, we were able to reduce the 

failover time to an average of 3 seconds. 

 The design and operation of RIP, OSPF, and EIGRP has been described in detail in 

various sources ([12], [1], [13]). Their distinct characteristics and advantages/disadvantages are 

also often cited. However, here we present an approach to the evaluation of the routing protocols 

based on their performance and ability to reconfigure quickly after a link failure. We tested the 

protocols in a simple Ethernet-based network and evaluated their performance based on 

convergence rates and additional network and CPU overhead. 

5.1 RIP 

The IOS software used in Cisco routers always performs packet switching when two equal paths 

to a particular destination exist. The ip route-cache command controls the use of the high-speed 

switching caches in the routers. By default, switching occurs on a per-destination basis with the 

router keeping a cache of the preferred route to a specific destination. When two equal paths 

exist to a particular destination and a non-connection oriented protocol such as ICMP or UDP is 

used, the IOS software alternates the path that the packets travel. When ICMP or UDP packets 

are forwarded to the backup router after a link failure, it instantly sends packets to their 

destination via an alternate route. Thus, it is not possible to accurately measure the convergence 

rate of RIP using one of these protocols. By establishing a TCP connection before the link failure 



occurs, however, we are able to prevent the router from using the alternate route until 

convergence of the RIP protocol takes place.  

In order to test the performance of the RIP protocol, a Perl application that communicates 

with a server via the TCP protocol was used. The program consists of a client and server and is 

responsible for both the generation of traffic via a TCP stream and the measurement of network 

outages. Upon connection to the server, the client program performs a fork and spawns a child 

process. The child captures network traffic via the tcpdump utility and calculates inter-packet 

arrival times of traffic from the server. The parent process, meanwhile, maintains a TCP 

connection with the server by sending 2-byte packets to the server at a 0.01 sec. interval. The 

server also responds with an identical stream of traffic to produce a bi-directional stream. Thus, 

by establishing a TCP connection with a remote machine and measuring the inter-packet delay 

for incoming traffic, we are able to measure the duration of network outage after a link failure 

and prior to convergence of the RIP protocol. 

5.2 OSPF and EIGRP 

A similar utility to the TCP-based version described above was written for ICMP-based testing 

of the OSPF and EIGRP protocols. Due to the nature of ICMP echoes, however, a separate client 

and server were not required. The program behaves identically to its TCP-based counterpart, 

with the exception of the type of traffic that is generated. The ICMP-based test program initiates 

a periodic ICMP ping at a rate of 1 packet/0.01 sec. It also captures the replies and calculates the 

duration of time between subsequent responses.  

Attempts to use TCP-based tests with the OSPF and EIGRP protocols yielded results that 

matched the operation of the TCP retransmission timer (RTO). If a TCP connection was 

established prior to the link failure, the TCP protocol would make attempts to reestablish 



connectivity based on the RTO. Thus, regardless of when convergence of the routing protocol 

took place, the measured duration of network outage was always a result of the RTO. The RTO 

is calculated as described in [14]. This behavior forced us to use ICMP-based tests during 

analysis of the OSPF and EIGRP protocols. 

6. Routing Protocol Performance 

The duration of network outages while running the RIP, OSPF, and EIGRP protocols was 

measured using custom designed utilities as described above in 3. Cisco IOS C1700 Software 

version 12.2(11)T2 was used and, unless otherwise mentioned, the parameters of the routing 

protocols were left at their default values. The results for analysis of each protocol are outlined 

individually below. 

6.1 RIP 

The RIP protocol allows four timers to be controlled by the user: update, invalid, holddown, and 

flush. These timers control the behavior of the protocol and have a direct effect on performance. 

The update timer controls the rate at which routing updates are sent. The invalid timer specifies 

the interval of time from the last update after which a route is declared invalid. In default 

configurations, the invalid timer is typically set to six times the update interval. The holddown 

timer specifies how long the hold-down phase lasts after a route has been declared invalid. 

During the hold-down phase, the router will not process any additional updates it receives 

regarding the particular route. The flush timer controls how long a router waits after receiving 

the last update before removing a route from the routing table. The flush timer overrides the 

hold-down timer and can be set such that the hold-down phase is never entered. By adjusting 

these three parameters and using a TCP-based test program, we measured the performance of the 



RIP protocol. Twenty trials were performed for each test case and the results are shown in Table 

1.  

 

 

Rip Timers (sec.) 

Update Invalid Holddown Flush 
Outage Duration (sec.) 

1 3 3 6 2.94 

2 6 6 8 5.01 

3 9 9 12 10.04 

4 12 12 16 14.86 

5 15 15 20 18.46 

 

 

 In all test cases, the hold-down and flush timers were set to a value that would avoid the 

hold-down phase of the RIP protocol altogether. Additional data also showed that the update 

timer will affect the deviation of the network outage duration, and overhead associated with the 

TCP protocol will add additional delays. In all five cases, connectivity was re-established within 

1.60 sec. of the invalid timer (before the expiration of the flush timer). 

6.2 OSPF 

Tests of the OSPF protocol were performed using ICMP traffic in the same manner as TCP 

traffic was used to analyze the RIP protocol. Four timers exist that affect the performance of the 

OSPF protocol, the hello timer, dead timer, SPF delay timer, and SPF hold timer. The hello timer 

controls how often a router sends “hello” packets to any listening routers in the same routing 

area. The dead timer specifies the amount of time after receiving the last hello packet after which 

Table 1 - Average duration of network outage after link failure 

measured via a TCP-based analysis of the RIP protocol 



it declares its neighbor “dead.” The SPF delay timer specifies the amount of time that the router 

waits before performing the SPF calculation after receiving a routing update. Finally, the SPF 

hold timer defines the amount of time a router waits between performing subsequent SPF 

calculations. The SPF delay and SPF hold timers were both set to 0 during the analysis. In a 

small network, these two timers can typically be set to a low value because large SPF 

calculations will not be performed often. Thus, we adjusted the hello timer and the dead timer to 

measure the convergence rates of the OSPF protocol. Twenty trials were performed for each test 

case, and results of the analysis are shown in Table 2. 

 

 

OSPF Timers 

Hello interval (sec.) Dead time (sec.) 
Outage Duration (sec.) 

1 3 2.94 

1 5 5.01 

1 10 10.04 

1 15 14.86 

5 20 18.46 

 

 In all test cases, connectivity was reestablished within 1.54 sec. of the dead timer. OSPF, 

however, does not cache multiple routes in the routing table. Thus, unlike RIP, the problematic 

routes were completely flushed from the routing table before packets were properly routed 

around the failed link. A higher hello interval also increased the deviation of the duration of 

network outage. 

 

Table 2 - Average duration of network outage after link failure 

measured via an ICMP-based analysis of the OSPF protocol 



6.3 EIGRP 

Our analysis of EIGRP was identical to the ICMP based analysis performed on the OSPF 

protocol. Two parameters can be tuned by the user to control the performance of EIGRP, the 

hello interval and the hold time. The hello interval specifies the frequency at which a router 

sends “hello” packets. The hold time defines how long a router will wait before flushing a route 

from its table after receiving the last hello packet. By adjusting these two parameters, we were 

able to perform an analysis in which we measured the convergence rates of the protocol. Once 

again, twenty trials were performed, and the results are shown in Table 3.  

 

 

  

 

 

 

 

 

 

 

Network connectivity was reestablished faster than the hold time in all test cases. 

Increasing the hello interval also increased the resolution of the duration of network outage as 

seen with the OSPF and RIP protocols. 

7. Conclusion 

7.1 Alternative Methods 

EIGRP Parameters 

Hello interval (sec.) Hold time (sec.) 
Outage Duration (sec.) 

1 3 2.73 

1 5 4.58 

1 10 9.51 

5 15 12.65 

5 20 17.54 

Table 3 - Average outage duration of network outage after link 

failure measured via an ICMP-based analysis of the EIGRP 



Some alternative methods of achieving fault-tolerance via a proxy were also researched. These 

methods included ICMP redirects, hardware MAC address takeover, and an active proxy 

scheme. The current method was chosen based on its ease of implementation and efficiency.  

7.1.1 ICMP Redirects 

Using the method of ICMP redirects is a simple way of redirecting traffic destined for a router. 

One must ensure, however, that all of the equipment connected to the network is able to accept 

ICMP redirects and obey them, which may not always be possible. Thus, this technique of 

forwarding traffic violated the goal of designing a completely transparent redundancy scheme. 

7.1.2 MAC Address Takeover 

A form of MAC address takeover is implemented in our current scheme. ARP spoofing is used 

to re-associate IP addresses with different hardware addresses. A similar approach involves 

changing the MAC addresses of network devices themselves. This approach, however, still 

requires updates to be made to the ARP tables in devices such as Ethernet switches before any 

changes will take effect and is difficult to implement. 

7.1.3 Active Proxy 

Another alternative technique employs an “active” proxy to forward network traffic 

appropriately. The proxy is placed between the nodes on the local subnet and the two routers for 

that subnet. Based on connection status, packets are forwarded to the appropriate router by the 

proxy. This method, however, forces all traffic to be constantly piped through another device, 

regardless of connection status. The result is an additional amount of latency that is added to all 

traffic flowing into and out of the subnet. An advantage of the method, however, is that 

reconfiguration can take place with very little delay. 

7.2 Possible Improvements 



As we have demonstrated, our FREP can achieve an average failover time of 1.55 seconds, but 

the failed router is not acknowledged by the dynamic routing protocols until a few seconds later.   

To solve this problem, the FREP could be modified to notify the backup router as soon as it 

detects a failure.   Obviously, this would introduce much more complexity into the system since 

the backup router would have to be configured to acknowledge the FREP as a valid source for 

supplying updates about the network.  This additional functionality could also introduce security 

vulnerabilities if a malicious host found a way to assume the identity of the FREP.  We chose not 

to explore this possible improvement since the slight increase in performance does not justify the 

increased complexity and risks. 

7.3 Applications  

Our prototype implementation of the FREP was based on a standard PC. Production quality 

applications of this device, however, could be scaled down to a much smaller size. The FREP 

could, for example, be based on a small form factor PC or other small computer appliance and be 

specifically tailored for deployment in network closets and server rooms. Furthermore, as layer 3 

network switches become more popular, additional functionality is readily being built into the 

devices. One such addition could be the implementation of a FREP directly inside of an Ethernet 

switch. This type of switch would be able to provide redundancy with even faster reconfiguration 

rates than the current FREP implementation by directly routing packets around a failed link. 

7.4 Summary 

The described proxy scheme provides an inexpensive and simple way to integrate redundancy 

into an existing IP over Ethernet network. It is not, however, an ideal solution for true high-

availability networks. In these types of networks, more specific solutions such as [4] are often 

employed. Our proposed FREP scheme provides a transparent method of allowing nodes on a 



subnet to communicate with a backup router in the event that connectivity with the primary 

router is lost. The failover operation was shown to have an average duration of 1.55 sec for the 

FREP along with an average of 3 sec for the selected dynamic routing protocol to acknowledge 

the failure.  The duration of the recovery operation was found to be independent of network 

topology or routing protocol. Using our scheme, additional redundancy can be provided to an 

Ethernet network without modification of existing networking equipment or software. 
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