
FAULT-TOLERANT RECONFIGURABLE ETHERNET-BASED
IP NETWORK PROXY

M. Crocker, J. Baranski, G. Lazarou

Department of Electrical and Computer Engineering
Mississippi State University

Mississippi State, MS 39762, USA
{mac1, glaz}@ece.msstate.edu

Abstract

Using commonly available hardware and software, we present a proxy scheme for IP over

Ethernet networks that provides a fault-tolerant solution without the need for modification of

existing networking equipment. This type of fault-tolerant reconfigurable Ethernet-based proxy

(FREP) is transparent to current applications and provides full redundancy with minimal packet

loss and fast reconfiguration times. A prototype implementation yielded a reconfiguration time

of 1.55 sec. Used in conjunction with optimized dynamic routing protocols, an average recovery

time of 3 seconds can be seen. The proposed proxy scheme can be deployed in any network

based on a topology that allows two connections between a subnet and the backbone. The

solution relies on a dynamic routing protocol to provide backbone level routing around the

malfunctioning inter-network link.

Keywords

Fault-tolerance, Ethernet, IP Network, Proxy, Reconfigurability, Communication system routing

1. Introduction

Inexpensive and widely available hardware has made Ethernet one of the most widely used link

layer protocols in today’s IP networks [1]. Fault tolerance, however, still remains a major issue

* Parts of this paper were presented at CIIT’03, © IASTED 2003, and SCI’04, © IIIS 2004.
** This work was partially supported by the US Office of Naval Research (ONR) under Contract Number N00014-
02-1-0623.

in IP over Ethernet networks. IP networks built on Ethernet technology can typically be

constructed using bus, star, or tree topologies. These topologies inherently allow for

uninterrupted network service during the addition, removal, or failure of network nodes. They do

not, however, provide a redundant connection to parent networks in a subnetted environment.

This lack of fault tolerance prevents Ethernet-based IP networks from being used in situations

that require a high-availability network solution.

A number of redundancy schemes for Ethernet networks have been designed and tested

over the past few years [2, 3, 4]. Most of these designs, however, require modification of

networking equipment (switches, hubs, NICs, etc.) or require software modification of the

individual network nodes. We present an approach that focuses on a simple design mated with a

specific, but flexible network topology. With this design, we have attempted to create a “plug-in”

solution to typical IP over Ethernet networks that provides transparent redundancy with a

minimal traffic footprint. We have focused on a design that is capable of being applied to

unmodified, off-the-shelf hardware and

software.

In a star topology or tree topology-

based network, a parent network is accessible

to its subnets via a single router. Modern

standards such as the FDDI protocol address

this issue; these technologies, however, often

require expensive hardware and complex

configurations. An Ethernet-based IP network

can also be provided multiple connections to a parent network by mating the typical star

Figure 1 A hybrid star-ring topology

topology to a central ring-shaped backbone as shown in Fig. 1. Although the central ring is not a

necessary component to our redundancy scheme, it is one of the most widely used WAN

backbone topologies as well as one of the most practical methods of providing two connections

to an Ethernet subnet from the backbone. The central ring provides two routes to the parent

network from each star-shaped subnet. This type of configuration is typically not useful to an

unmodified IP over Ethernet network, however. In order to take advantage of this network

architecture, our design employs a fault-tolerant reconfigurable Ethernet-based proxy (FREP),

which allows traffic to be forwarded to a backup router in the event of a primary router failure.

This solution provides a redundant connection to the backbone with only the addition of the

FREP device and without any modification of individual network nodes. The need for one FREP

device per network also makes this an easily scalable solution. FREPs can be added only to

networks that require fault-tolerance, while other networks remain unchanged.

In this paper, we present a general overview of the design of the FREP as well as a

detailed description of a prototype FREP implementation. We also evaluate the performance of

the FREP and discuss the configuration and resulting performance of three dynamic routing

protocols when used with the FREP.

2. Design Overview

The design of the transparent redundancy scheme is based on a normally configured IP network.

In the typical IP over Ethernet network, nodes on a specific subnet are unable to communicate

with any “outside” nodes when the router acting as the default gateway for that particular subnet

becomes unreachable. The proposed scheme uses the FREP to mimic the primary router for a

particular subnet in case of a failure.

The FREP plays no role in packet routing during normal operation, although it repeatedly

polls the primary router to ensure connectivity. This mode of operation is illustrated in Fig. 2. If

the primary router is determined to be unreachable the FREP assumes the router’s identity and

transparently forwards all outbound packets to the backup router associated with that particular

subnet. This “failover” mode of operation is shown in Fig. 3.

Inbound traffic must also be routed properly into the subnets during times of a primary

router failure. A dynamic IP routing protocol ensures that the routers constantly possess an

accurate view of the network and that inbound packets are properly routed around the failed link.

This “transparent proxy” design scheme ensures proper traffic flow into and out of individual

subnets during failover operation without any modification of existing network hardware or

software.

While operating in failover mode, the FREP constantly listens for the presence of the

primary router. Status of the connection to the primary router is monitored at the link layer to

ensure minimal overhead. Once the primary router responds and is determined to be reachable

Figure 2 FREP during normal operation monitors primary router for failure

again, the FREP relinquishes control back to the router and normal routing of traffic into and out

of the subnet is resumed. By using a link layer protocol, we are also able to implement a “flap

detection” mechanism, which allows the FREP to maintain control of the router’s identity during

times when the link is experiencing intermittent operation or “flapping”.

3. Prototype Implementation

The FREP was implemented using a Linux-based computer with two network interface cards and

custom software to perform the failover operations. The software was written in C and is

responsible for the control of the FREP. It is a user-space program that runs as a daemon. The

following information is collected by the software upon initial execution:

• IP address to assign to each network interface (eth0 and eth1)

• The local subnet mask

• IP address and hardware MAC address of the primary router

• IP address of the backup router

Figure 3 FREP in failover mode, assumes identity of failed router and forwards packets to
backup router

• A number of parameter values that affect the frequency of various actions performed by

the FREP

Once the values have been properly input, a configuration file is written for future use. The

FREP then proceeds to perform connectivity checks to the primary router at specified intervals.

If the primary router is determined to be unreachable, the FREP enters a failover mode in which

it forwards all traffic destined for the primary router to a backup router. While in failover mode,

the FREP also monitors the status of the primary router and relinquishes control once it becomes

reachable again. All of the operations performed by the FREP are illustrated in Fig. 4.

Figure 4 Sequence of operations performed by the FREP

Testing and implementation of the FREP took place in a test bed network consisting of

three subnet/router pairs. The network was designed using a hybrid star-ring topology as

described in section 1. Netspec [5] software was used to place a load on the network during

testing to more closely simulate a real-world network.

3.1 Connectivity Checks

The connectivity checks performed by the FREP consist of a connect() system call with a stream

socket that points to the echo port1 of the router. The connect() call is set to time out after a

specified interval. The timeout operation is achieved via synchronous I/O multiplexing by way of

a select() system call. This method of attempting to establish a connection to the echo port

ensures that the primary router is reachable via TCP traffic. Most hardware and software routers

available today are configured with the echo service disabled. This type of configuration yields a

“Connection refused” error upon a connection attempt and can be used to determine whether the

router is reachable. Thus, connectivity to the primary router is verified if the FREP is either

allowed to establish a connection or if it receives the “Connection refused” error. If the

connectivity check succeeds the software continues to perform checks at the user-specified

interval. Otherwise, the FREP enters failover mode and its network interfaces are reconfigured to

mimic the router.

3.2 “Failover” Mode

Once the switch to failover mode occurs, the eth0 interface is assigned the IP address of the

primary router. Since the primary router’s IP address is now associated with a different hardware

MAC address, this change must be propagated throughout the network. This operation is

1 Port 7 is the IANA assigned port number of the echo service [6].

performed by sending a gratuitous ARP packet2 to the Ethernet broadcast address. This ensures

that the ARP caches of all listening network nodes are updated with the new MAC address. At

this point, all outbound packets sent to the primary router are now being delivered directly to the

FREP. Once the packets are received by the FREP, a routing decision is made by the kernel.

Since no static routes exist in the routing table, outbound packets are sent via the default route,

which was inserted earlier. Thus, without changing the IP address of the router, all packets sent

to the primary router on a particular subnet are now forwarded to a backup router via the

transparent proxy.

3.3 Recovery

While operating in failover mode, the FREP constantly monitors the status of the primary router.

The monitoring operation is performed by two separate processes spawned via a fork() system

call. The child process is responsible for sending out ARP queries for the MAC address of the

router at specified intervals. The ARP queries are sent via the low level packet interface of the

Linux kernel and are constructed using the arphdr structure and addressed using a sockaddr_ll

structure. The parent process listens for a response from the router using various methods from

the pcap packet capture library [8]. Once a response is received, the child process is killed and

control is returned to the caller. The FREP then relinquishes the router’s IP address and resumes

performing TCP connectivity checks.

4. Performance Analysis

2 A gratuitous ARP packet is an ARP request or reply that forces all listening nodes to update their ARP cache. The
packet sender and target addresses are both set to the IP address of the cache entry that is to be updated; the sender
hardware address is set to the hardware address to which the entry should be updated. [7]

The performance of the FREP software and hardware is highly dependent upon the user defined

parameters that are set in the program’s configuration file. The following parameters can be

changed by the user and have a direct effect on the operating characteristics of the FREP:

• Interval between TCP connectivity checks

• Maximum allowed timeout of TCP connectivity check

• Maximum number of failures allowed for TCP connectivity check before a switch to

failover mode occurs

• Interval between recovery checks (ARP requests for the primary router’s MAC address)

By modifying these parameters the user has total control over the behavior of the FREP. If high

availability, for example, is not an issue the interval between connectivity checks can be

increased to a higher value. This setting prevents the FREP from frequently attempting to

connect to the router, while still providing redundancy in the event of a failure. Thus, the trade-

off that the user is faced with is response time versus network overhead. Although the overall

network footprint of the FREP device is minimal, performing frequent connectivity checks on a

busy network may not be desired.

Performance of the FREP was measured using the Tcpdump packet capture tool [9],

which is available with most standard Linux distributions. The effects of a network failure and a

recovery performed by the FREP device were observed using TCP, UDP, and ICMP traffic. All

of these tests were performed using a 1 sec interval between TCP connectivity checks. It should

be noted that increasing this parameter by a particular amount has the effect of increasing the

minimum values reported here by that same amount.

The time required for the FREP to complete the reconfiguration operation was measured

as the time between the initial loss of connectivity to the primary router and the time of arrival of

the first packet of traffic at the FREP. This time was measured to be 1.55 sec and is

representative of the time required by the FREP to forward traffic to the backup router from the

initial time of failure. It was observed, however, that the apparent interruption of network service

to the local subnet was significantly greater and a result of the dynamic routing protocol

employed to perform inter-network routing. Section 5 details the tested routing protocols and

how they can be optimized to provide a desirable failover period. The tests described here were

performed in a testbed network that consists of three subnet/router pairs as shown in Fig. 1. By

scaling down the network to a two router/subnet pair architecture, the 1.55 sec. reconfiguration

time can be observed between any two nodes and is the “raw” reconfiguration rate of the FREP.

5. Routing Protocol Analysis

We evaluated three dynamic routing protocols, Routing Information Protocol (RIP), Open

Shortest Path First (OSPF), and Enhanced Interior Gateway Routing Protocol (EIGRP) used in

conjunction with our FREP. Although previous work exists in which routing protocols have been

compared ([10], [11]), no comparisons of the protocols’ performances in response to a link

failure in a small Ethernet-based network have been documented. Additionally, prior studies

have generally employed simulation-based techniques and do not provide an experimental basis

for the comparisons.

 Each of the three above-mentioned dynamic routing protocols behaves differently upon

detection of a failed link, and each has distinct advantages and disadvantages. Some comparisons

of their performance and associated overhead traffic, however, can be made. Using test scripts

and our FREP, we measured the duration of network outage after a link failure while running one

of the aforementioned dynamic routing protocols.

 Initial failover tests resulted in convergence times in the area of 40 seconds or more while

using the OSPF dynamic routing protocol. The FREP was actively forwarding packets to the

backup router after 1.55 seconds but the OSPF routing protocol was configured with the default

settings of 40 seconds before a path is considered invalid. Therefore, it took the backup router

40 seconds to acknowledge that the path to the primary router was no longer valid. By changing

the various timing settings associated with each routing protocol, we were able to reduce the

failover time to an average of 3 seconds.

 The design and operation of RIP, OSPF, and EIGRP has been described in detail in

various sources ([12], [1], [13]). Their distinct characteristics and advantages/disadvantages are

also often cited. However, here we present an approach to the evaluation of the routing protocols

based on their performance and ability to reconfigure quickly after a link failure. We tested the

protocols in a simple Ethernet-based network and evaluated their performance based on

convergence rates and additional network and CPU overhead.

5.1 RIP

The IOS software used in Cisco routers always performs packet switching when two equal paths

to a particular destination exist. The ip route-cache command controls the use of the high-speed

switching caches in the routers. By default, switching occurs on a per-destination basis with the

router keeping a cache of the preferred route to a specific destination. When two equal paths

exist to a particular destination and a non-connection oriented protocol such as ICMP or UDP is

used, the IOS software alternates the path that the packets travel. When ICMP or UDP packets

are forwarded to the backup router after a link failure, it instantly sends packets to their

destination via an alternate route. Thus, it is not possible to accurately measure the convergence

rate of RIP using one of these protocols. By establishing a TCP connection before the link failure

occurs, however, we are able to prevent the router from using the alternate route until

convergence of the RIP protocol takes place.

In order to test the performance of the RIP protocol, a Perl application that communicates

with a server via the TCP protocol was used. The program consists of a client and server and is

responsible for both the generation of traffic via a TCP stream and the measurement of network

outages. Upon connection to the server, the client program performs a fork and spawns a child

process. The child captures network traffic via the tcpdump utility and calculates inter-packet

arrival times of traffic from the server. The parent process, meanwhile, maintains a TCP

connection with the server by sending 2-byte packets to the server at a 0.01 sec. interval. The

server also responds with an identical stream of traffic to produce a bi-directional stream. Thus,

by establishing a TCP connection with a remote machine and measuring the inter-packet delay

for incoming traffic, we are able to measure the duration of network outage after a link failure

and prior to convergence of the RIP protocol.

5.2 OSPF and EIGRP

A similar utility to the TCP-based version described above was written for ICMP-based testing

of the OSPF and EIGRP protocols. Due to the nature of ICMP echoes, however, a separate client

and server were not required. The program behaves identically to its TCP-based counterpart,

with the exception of the type of traffic that is generated. The ICMP-based test program initiates

a periodic ICMP ping at a rate of 1 packet/0.01 sec. It also captures the replies and calculates the

duration of time between subsequent responses.

Attempts to use TCP-based tests with the OSPF and EIGRP protocols yielded results that

matched the operation of the TCP retransmission timer (RTO). If a TCP connection was

established prior to the link failure, the TCP protocol would make attempts to reestablish

connectivity based on the RTO. Thus, regardless of when convergence of the routing protocol

took place, the measured duration of network outage was always a result of the RTO. The RTO

is calculated as described in [14]. This behavior forced us to use ICMP-based tests during

analysis of the OSPF and EIGRP protocols.

6. Routing Protocol Performance

The duration of network outages while running the RIP, OSPF, and EIGRP protocols was

measured using custom designed utilities as described above in 3. Cisco IOS C1700 Software

version 12.2(11)T2 was used and, unless otherwise mentioned, the parameters of the routing

protocols were left at their default values. The results for analysis of each protocol are outlined

individually below.

6.1 RIP

The RIP protocol allows four timers to be controlled by the user: update, invalid, holddown, and

flush. These timers control the behavior of the protocol and have a direct effect on performance.

The update timer controls the rate at which routing updates are sent. The invalid timer specifies

the interval of time from the last update after which a route is declared invalid. In default

configurations, the invalid timer is typically set to six times the update interval. The holddown

timer specifies how long the hold-down phase lasts after a route has been declared invalid.

During the hold-down phase, the router will not process any additional updates it receives

regarding the particular route. The flush timer controls how long a router waits after receiving

the last update before removing a route from the routing table. The flush timer overrides the

hold-down timer and can be set such that the hold-down phase is never entered. By adjusting

these three parameters and using a TCP-based test program, we measured the performance of the

RIP protocol. Twenty trials were performed for each test case and the results are shown in Table

1.

Rip Timers (sec.)

Update Invalid Holddown Flush
Outage Duration (sec.)

1 3 3 6 2.94

2 6 6 8 5.01

3 9 9 12 10.04

4 12 12 16 14.86

5 15 15 20 18.46

 In all test cases, the hold-down and flush timers were set to a value that would avoid the

hold-down phase of the RIP protocol altogether. Additional data also showed that the update

timer will affect the deviation of the network outage duration, and overhead associated with the

TCP protocol will add additional delays. In all five cases, connectivity was re-established within

1.60 sec. of the invalid timer (before the expiration of the flush timer).

6.2 OSPF

Tests of the OSPF protocol were performed using ICMP traffic in the same manner as TCP

traffic was used to analyze the RIP protocol. Four timers exist that affect the performance of the

OSPF protocol, the hello timer, dead timer, SPF delay timer, and SPF hold timer. The hello timer

controls how often a router sends “hello” packets to any listening routers in the same routing

area. The dead timer specifies the amount of time after receiving the last hello packet after which

Table 1 - Average duration of network outage after link failure

measured via a TCP-based analysis of the RIP protocol

it declares its neighbor “dead.” The SPF delay timer specifies the amount of time that the router

waits before performing the SPF calculation after receiving a routing update. Finally, the SPF

hold timer defines the amount of time a router waits between performing subsequent SPF

calculations. The SPF delay and SPF hold timers were both set to 0 during the analysis. In a

small network, these two timers can typically be set to a low value because large SPF

calculations will not be performed often. Thus, we adjusted the hello timer and the dead timer to

measure the convergence rates of the OSPF protocol. Twenty trials were performed for each test

case, and results of the analysis are shown in Table 2.

OSPF Timers

Hello interval (sec.) Dead time (sec.)
Outage Duration (sec.)

1 3 2.94

1 5 5.01

1 10 10.04

1 15 14.86

5 20 18.46

 In all test cases, connectivity was reestablished within 1.54 sec. of the dead timer. OSPF,

however, does not cache multiple routes in the routing table. Thus, unlike RIP, the problematic

routes were completely flushed from the routing table before packets were properly routed

around the failed link. A higher hello interval also increased the deviation of the duration of

network outage.

Table 2 - Average duration of network outage after link failure

measured via an ICMP-based analysis of the OSPF protocol

6.3 EIGRP

Our analysis of EIGRP was identical to the ICMP based analysis performed on the OSPF

protocol. Two parameters can be tuned by the user to control the performance of EIGRP, the

hello interval and the hold time. The hello interval specifies the frequency at which a router

sends “hello” packets. The hold time defines how long a router will wait before flushing a route

from its table after receiving the last hello packet. By adjusting these two parameters, we were

able to perform an analysis in which we measured the convergence rates of the protocol. Once

again, twenty trials were performed, and the results are shown in Table 3.

Network connectivity was reestablished faster than the hold time in all test cases.

Increasing the hello interval also increased the resolution of the duration of network outage as

seen with the OSPF and RIP protocols.

7. Conclusion

7.1 Alternative Methods

EIGRP Parameters

Hello interval (sec.) Hold time (sec.)
Outage Duration (sec.)

1 3 2.73

1 5 4.58

1 10 9.51

5 15 12.65

5 20 17.54

Table 3 - Average outage duration of network outage after link

failure measured via an ICMP-based analysis of the EIGRP

Some alternative methods of achieving fault-tolerance via a proxy were also researched. These

methods included ICMP redirects, hardware MAC address takeover, and an active proxy

scheme. The current method was chosen based on its ease of implementation and efficiency.

7.1.1 ICMP Redirects

Using the method of ICMP redirects is a simple way of redirecting traffic destined for a router.

One must ensure, however, that all of the equipment connected to the network is able to accept

ICMP redirects and obey them, which may not always be possible. Thus, this technique of

forwarding traffic violated the goal of designing a completely transparent redundancy scheme.

7.1.2 MAC Address Takeover

A form of MAC address takeover is implemented in our current scheme. ARP spoofing is used

to re-associate IP addresses with different hardware addresses. A similar approach involves

changing the MAC addresses of network devices themselves. This approach, however, still

requires updates to be made to the ARP tables in devices such as Ethernet switches before any

changes will take effect and is difficult to implement.

7.1.3 Active Proxy

Another alternative technique employs an “active” proxy to forward network traffic

appropriately. The proxy is placed between the nodes on the local subnet and the two routers for

that subnet. Based on connection status, packets are forwarded to the appropriate router by the

proxy. This method, however, forces all traffic to be constantly piped through another device,

regardless of connection status. The result is an additional amount of latency that is added to all

traffic flowing into and out of the subnet. An advantage of the method, however, is that

reconfiguration can take place with very little delay.

7.2 Possible Improvements

As we have demonstrated, our FREP can achieve an average failover time of 1.55 seconds, but

the failed router is not acknowledged by the dynamic routing protocols until a few seconds later.

To solve this problem, the FREP could be modified to notify the backup router as soon as it

detects a failure. Obviously, this would introduce much more complexity into the system since

the backup router would have to be configured to acknowledge the FREP as a valid source for

supplying updates about the network. This additional functionality could also introduce security

vulnerabilities if a malicious host found a way to assume the identity of the FREP. We chose not

to explore this possible improvement since the slight increase in performance does not justify the

increased complexity and risks.

7.3 Applications

Our prototype implementation of the FREP was based on a standard PC. Production quality

applications of this device, however, could be scaled down to a much smaller size. The FREP

could, for example, be based on a small form factor PC or other small computer appliance and be

specifically tailored for deployment in network closets and server rooms. Furthermore, as layer 3

network switches become more popular, additional functionality is readily being built into the

devices. One such addition could be the implementation of a FREP directly inside of an Ethernet

switch. This type of switch would be able to provide redundancy with even faster reconfiguration

rates than the current FREP implementation by directly routing packets around a failed link.

7.4 Summary

The described proxy scheme provides an inexpensive and simple way to integrate redundancy

into an existing IP over Ethernet network. It is not, however, an ideal solution for true high-

availability networks. In these types of networks, more specific solutions such as [4] are often

employed. Our proposed FREP scheme provides a transparent method of allowing nodes on a

subnet to communicate with a backup router in the event that connectivity with the primary

router is lost. The failover operation was shown to have an average duration of 1.55 sec for the

FREP along with an average of 3 sec for the selected dynamic routing protocol to acknowledge

the failure. The duration of the recovery operation was found to be independent of network

topology or routing protocol. Using our scheme, additional redundancy can be provided to an

Ethernet network without modification of existing networking equipment or software.

References

[1] L. L. Petersen and B. S. Davie, Computer Networks: A Systems Approach, Second

Edition. (San Francisco, CA: Morgan Kaufman Publishers, 2000).

[2] S. Song, J. Huang, P. Kappler, R. Freimark, and T. Kozlik, ”Fault-Tolerant Ethernet

Middleware for IP Based Process Control Networks,” Proc. 25th Annual IEEE

Conference on Local Computer Networks, Tampa, Florida, USA, 2000, 116-125.

[3] J. Huang, S. Song, L. Li, P. Kappler, R. Freimark, J. Gustin, and T. Kozlik, ”An Open

Solution to Fault-Tolerant Ethernet: Design, Prototyping, and Evaluation,” Proc. IEEE

International Performance, Computing, and Communications Conference,

Phoenix/Scottsdale, Arizona, USA, 1999, 461-468.

[4] Linux-HA Development Team. High Availability Linux Project. [Online] Available:

http://www.linuxha.org

[5] R. Jonkman. NetSpec. [Online] Available: http://www.ittc.ku.edu/netspec/

[6] Internet Assigned Numbers Authority. Port Numbers. [Online] Available:

http://www.iana.org/assignments/port-numbers

[7] Internet Engineering Task Force (IETF) and the Internet Engineering Steering Group

(IESG). RFC 3220. [Online] Available: ftp://ftp.rfc-editor.org/innotes/rfc3220.txt

[8] V. Jacobson, C. Leres, and S. McCanne. TCPDUMP Public Repository: libpcap-0.6.2.

[Online]. Available: http://www.tcpdump.org/release/libpcap-0.6.2.tar.gz

[9] V. Jacobson, C. Leres, and S. McCanne. TCPDUMP Public Repository: tcpdump-3.6.2.

[Online]. Available: http://www.tcpdump.org/release/tcpdump-3.6.2.tar.gz

[10] W. Zaumen and J. Garcia-Luna-Aceves, “Steadystate Response of Shortest-path Routing

Algorithms,” in Proc. IPCCC, 1992, pp. 323-332.

[11] Y. Zhao, X. Yin, B. Han, and J. Wu, “Online Test System Applied in Routing Protocol

Test,” in Proc. Ninth International Symposium on Analysis and Simulation of Computer

and Telecommunication Systems, 2001, pp. 331-338.

[12] R. Malhotra, IP Routing. Sebastopol, CA: O’Reilly & Associates, pp. 10-156.

[13] A. Leon-Garcia and I. Widjaja, Communication Networks: Fundamental Concepts and

Key Architectures. Boston, MA: McGraw Hill, pp. 590-618.

[14] Internet Engineering Taskforce and Internet Engineering Steering Group: Network

Working Group. RFC 2988: Computing TCP’s Retransmission Timer. [Online]

Available: http://www.rfc-editor.org/rfc/rfc2988.txt

