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Abstract— In this paper, we present an adaptive search algo-
rithm to automatically select the scaling range in the wavelet-
based Hurst parameter estimation method. This algorithm is
recursive and adaptive in nature, and it can select a scaling range
consistent with human visual selection. In addition, it can be
easily extended to automatically find the (approximately) linear
regions of any curve. We tested our algorithm on 13 NLANR
network traffic traces. The results show that our algorithm works
well.

I. INTRODUCTION

It is believed [1] that the high variability in Internet traffic is
due to the long-range dependence (LRD) property of the traffic
processes. In general, a (weakly) stationary discrete-time real-
valued stochastic process Y � �Yn�n � 0�1�2� � � �� with mean
µ � E�Yn� and variance σ2 � E��Yn�µ�2��∞ exhibits LRD if
∑∞

k�1 r�k� � ∞, where r�k� measures the correlation between
samples of Y separated by k units of time. If ∑∞

k�1 r�k� � ∞,
then Y is said to exhibit short-range dependence (SRD).

Common traffic models with LRD are based on self-
similar processes. In traffic modeling, the term self-similarity
is usually used to refer to the asymptotically-second order
self-similar processes [1]: assume that Y has an autocorre-
lation function of the form r�k� � k�βL�k� as k � ∞, where
0 � β � 1 and the function L is slowly varying at infinity,
i.e., limk�∞

L�kx�
L�k� � 1 �x � 0. For each m � 1�2�3� � � �, let

Y �m� � �Y �m�
n �n � 1�2�3� � � �� denote a new aggregated time

series obtained by averaging the original series Y over non-
overlapping blocks of size m, replacing each block by its
sample mean: Y �m�

n �
Ynm�m�1�����Ynm

m �

The new aggregated discrete-time stochastic process Y �m�

is also (weakly) stationary with an autocorrelation function
r�m��k�. Then Y is called asymptotically second-order self-
similar with self-similar parameter H � 1� β

2 if, for all
k large enough, r�m��k� � r�k� as m � ∞. That is, Y is
asymptotically second-order self-similar if the corresponding
aggregated processes Y �m� become indistinguishable from Y
at least with respect to their autocorrelation functions. By
definition, asymptotically second-order self-similarity implies
LRD and vice versa [1]

The parameter H is called the Hurst parameter. For gen-
eral self-similar processes, it measures the degree of “self-
similarity.” For random processes suitable for modeling net-
work traffic, the Hurst parameter is basically a measure of the
speed of decay of the tail of the autocorrelation function. If
0�5�H � 1, then the process is LRD, and if 0�H � 0�5, then

it is SRD. Hence, H is widely used to capture the intensity of
long-range dependence in a traffic process. The closer H is to
1 the more long-range dependent the traffic is, and vice versa.

There are several methods for estimating H from a traffic
trace. One of the most widely used is based on wavelets [2].
Given a traffic trace Yn, H can be estimated as follows:

� First, for each scale j and position k, compute the wavelet
coefficients: d� j�k� �� Yn�Ψ j�k�n� �� ∑∞

n�1YnΨ j�k�n�
where Ψ j�k�n� � 2� j�2Ψ0�2� jn � k� and Ψ0 is the
(Daubechies) mother wavelet [2].

� Then, compute the wavelet energy µ j for each scale j:
µ j �

1
Nj

∑
Nj
k�1d2� j�k� where Nj is the total number of

wavelet coefficients at scale j.
� Next, make a plot of log2�µ j� versus scale j and apply

linear regression over the curve region that looks linear.
Compute the slope α.

� Finally, estimate the Hurst parameter as Ĥ � α�1
2 �

The scaling behavior of internet traffic is not strictly self-
similar, but rather more complex [5]. By using the wavelet
method above, we will usually see that the log2�µ j� versus
j curve is not strictly linear (for example, see Figures 1-3).
Below a certain cut-off scale j1, the scaling behavior is not
self-similar. (It is believed that internet traffic below the lower
cut-off scale j1 exhibits multi-fractal scaling behavior.) Above
a certain higher cut-off scale j2, there will be few transformed
wavelet coefficients, and the estimation of the Hurst parameter
will be quite noisy [3]. When estimating the Hurst parameter,
it is better to discard data in the fine scales less than j1 and
coarse scales greater than j2.

So far, to estimate the Hurst parameter using the wavelet-
based method, a visual inspection of the log2�µ j� vs. j plot
is necessary to identify the linear trend region of the curve
(see step 3 above). This becomes a problem because it is not
objective. Furthermore, there are situations in which visual
inspection is not possible such as real-time automatic Hurst
parameter estimation. This problem is very important in the
process of determining the Hurst parameter by the wavelet
method.

In this paper, we present a robust, adaptive and recursive
algorithm that automatically searches and determines the linear
region of the curve. The algorithm recursively finds the scales
j1 and j2 for which the curve over the range � j1� j2� seems
linear. This algorithm is based on the greedy algorithm prin-
ciple. The global optimum solution can be obtained by using
local optimum subsolutions. The algorithm is simple and fast,
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and thus it can be incorporated into the present wavelet-based
method for real-time Hurst parameter estimation of network
traffic. We tested our algorithm with 13 long traffic traces
from the Auckland-II, Auckland-IV, NZIX-II, Bell Labs-I, and
Abilene-I data archives [6].

The rest of this paper is organized as follows. Section
II presents our proposed algorithm. Section III shows some
scaling range results on real traffic traces using our algorithm.
Our conclusions are presented in section IV.

II. THE ALGORITHM

To determine the linear region, a natural approach is to use
linear regression to model the observational data. Then, using
a model to simulate the experimental data, it is important to
measure how well that model matches the experimental data.
Rather than the usual residual (the sum of the squares of
the deviations), we use Theil’s inequality coefficient U [4].
Because it is normalized, U is a data-independent measure
of the goodness-of-fit and therefore better for our purposes.
Theil’s U is defined as follows:

U �

�
�1�N�∑N

j�1�Y
s
j �Y a

j �
2

�
�1�N�∑N

j�1�Y
s
j �

2 �
�
�1�N�∑N

j�1�Y
a
j �

2
(1)

where Y s
j represents the simulated value, and Y a

j represents
the actual value. N is the total number of data points. The
numerator is the square root of mean square error, and the
denominator is used to scale U such that it will always be
in the range of 0 and 1. U is 0 when the model’s simulation
results match the observational data exactly. U is 1 when the
model’s performance is worst.

The algorithm searches and determines the linear region of
the curve. Given a log2�µ j� vs. j curve for a traffic trace Yn,
we begin by choosing j1 � j2 in the middle region1 of the
curve. Then, while the Theil’s parameter for the range � j 1� j2�
is below some given threshold γ0, we expand the range either
left to � j1�1� j2� or right to � j1� j2 �1�, always choosing the
expansion with the smaller value of Theil’s parameter. So as
long as this process continues, the linear range � j1� j2� will
stretch to its optimal width.

The following shows the algorithm in detail:
1) Set the initial values of j1 and j2 as follows: j1 � M

2 �
1� j2 � M

2 �1, where M is the maximum wavelet scale.
Let L be the length of Yn, then M � log2�L�.

2) Using the least square method, fit a linear line between
j1 and j2: y� j� � k j � b � ε j. where y� j� � log2�µ j�
and ε j is the error associated with point j. Letting
N � j2� j1�1, the slope k and constant b are computed
as follows:

k �
N ∑ j2

j� j1
jy� j��∑ j2

j� j1
j∑ j2

j� j1
y� j�

N ∑ j2
j� j1

j2� �∑ j2
j� j1

j�2

1All traffic traces analyzed for this paper exhibit monofractal behavior that
spans the middle region of the wavelet curve. Therefore, for simplicity, we
let the algorithm to start progressing from the middle region of the curve.
However, this is not a necessary condition of the algorithm.
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Fig. 1. log2�µj� vs. scale j for the Auckland-IV traffic trace 20010301-310-0
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Fig. 2. log2�µj� versus scale j for the Bell Labs-I traffic trace 20020519-
151927.

b �
∑ j2

j� j1
y� j�

N
� k

∑ j2
j� j1

j

N
3) Next, compute Theil’s U parameter using (1) and data

between j1 and j2. Note that here Y s
j � k j � b, Y a

j �
y� j�� j � j1� ���� j2 : δ� j1� j2� �U

4) If δ� j1� j2�� γ0 then compute δ� j1�1� j2� and δ� j1� j2�
1�.

a) If δ� j1�1� j2�� δ� j1� j2�1� and δ� j1�1� j2�� γ0

then set j1 � j1�1 and go back to Step 2.
b) If δ� j1� j2�1�� δ� j1�1� j2� and δ� j1� j2�1�� γ0

then set j2 � j2 �1 and go back to Step 2.
5) else Stop.
Obviously, the value of the residual error threshold γ0

determines the goodness-of-fit. We recommend using the
threshold value γ0=0.015. On one hand, Table II shows that
this threshold produces linear ranges that closely match the
ranges obtained by visual inspection. On the other hand, such
γ0 is close enough to zero to yield a good estimate of the Hurst
parameter.

III. RESULTS

We implemented the above algorithm in Matlab and ob-
tained automatically the linear trend ranges � j1� j2� for the 13
long traffic traces.

To illustrate how the algorithm works, we take traffic
trace 20010301-310-0 as an example to demonstrate how the
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Fig. 3. log2�µj� versus scale j for the Abilene-I traffic trace IPLS-KSCY-
20020814-090000-1.

algorithm gradually searches for the optimal linear scaling
range. Table I shows detailed search results step by step.

TABLE I

STEP BY STEP ILLUSTRATION OF LINEAR RANGE SELECTION BY

ADAPTIVE SEARCH ALGORITHM FOR THE CURVE IN FIGURE 1.

number of points(N) [j1,j2] stretch direction theil U
3 [9,11] 0.0039
4 [9,12] right 0.0035
5 [9,13] right 0.0032
6 [9,14] right 0.0033
7 [8,14] left 0.0036
8 [8,15] right 0.0042
9 [8,16] right 0.0041
10 [7,16] left 0.0052
11 [6,16] left 0.0064
12 [5,16] left 0.0075
13 [4,16] left 0.0084

In Table II, the linear scaling range obtained using visual
inspection and the adaptive search algorithm are compared.
Clearly, the algorithmically obtained linear regions for the

log2�µ j� vs. j curves are consistent with ones obtained from
visual inspection. To estimate the Hurst parameter we used
the Matlab routine LDestimate.m which is available in [7].
We observe from Table II that the estimated Hurst parameter
values for two of the IPLS traffic traces are greater than
one. The explanation of this is beyond of the scope of
this paper. However, the reader should note that there are
well-defined self-similar processes with stationary increments,
infinite second moments, and H � 1 [8].

IV. CONCLUSION

In this paper, we presented a robust and adaptive algorithm
that can be incorporated in the wavelet-based method of
estimating the Hurst parameter for traffic traces with LRD, that
is, traffic traces that exhibit monofractal behavior over a wide
range of time scales. It provides a systematic and objective
way to determine the linear trend region instead of subjective
human visual inspection. It is based on the greedy algorithm
principle and uses Theil’s inequality measure. Our algorithm
automatically searches and determines the linear region of the

TABLE II

COMPARISON BETWEEN ALGORITHMICALLY OBTAINED LINEAR TREND

REGIONS AND VISUAL INSPECTION FOR THE AUCKLAND TRAFFIC

TRACES.

Traffic Trace by inspection by algorithm Ĥ
19991129-134258-0 [4,20] [3,20] 0.813
19991129-134258-1 [6,20] [7,20] 0.968
19991201-192548-0 [3,19] [3,19] 0.890

nzix-II [4,15] [4,16] 0.979
20010220-226-0 [3,15] [4,14] 0.836
20010220-226-1 [4,15] [4,15] 0.891
20010301-310-0 [4,16] [4,16] 0.919
20010301-310-1 [4,16] [4,16] 0.903

20020519-000000 [5,10] [2,9] 0.564
20020519-151927 [2,15] [4,15] 0.964

IPLS-CLEV-20020814-0 [4,12] [5,12] 1.299
IPLS-CLEV-20020814-1 [4,12] [4,12] 0.965
IPLS-KSCY-20020814-1 [4,12] [4,12] 1.121

log2�µ j� vs. j curve. That is, the algorithm recursively finds
the scales j1 and j2 for which the curve over � j1� j2� looks
linear.

This algorithm is an improvement to the process of estimat-
ing the Hurst parameter in the wavelet domain. It can be easily
integrated with various traffic control schemes that require
real-time Hurst parameter estimations. We tested our algorithm
with 13 long NLANR traffic traces and obtained satisfactory
results. These traffic traces exhibit monofractal behavior that
spans the middle region of the wavelet curve, otherwise the
processes would have been classified as multifractal. There-
fore, for simplicity, we let the algorithm to start progressing
from the middle region of the curve. However, this is not a
necessary condition of the algorithm. It can be easily modified
such that, for example, the initial values of j1 and j2 are set
to be the two end scale values (i.e., first and last). Also, this
algorithm can be extended to automatically determine all the
linear regions of a curve that have different slopes, such as
wavelet curves of multifractal processes.
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