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Abstract—Recent work in machine learning has focused on 

models, such as the support vector machine (SVM), that 
automatically control generalization and parameterization as 
part of the overall optimization process. In this paper, we show 
that SVMs provide a significant improvement in performance on 
a static pattern classification task based on the Deterding vowel 
data. We also describe an application of SVMs to large 
vocabulary speech recognition, and demonstrate an improvement 
in error rate on a continuous alphadigit task (OGI Alphadigits) 
and a large vocabulary conversational speech task 
(Switchboard). Issues related to the development and 
optimization of an SVM/HMM hybrid system are discussed. 
 

Index Terms—Support vector machines, statistical modeling, 
machine learning, speech recognition. 
 

I. INTRODUCTION 
peech recognition systems have become one of the 
premier applications for machine learning and pattern 

recognition technology. Modern speech recognition systems, 
including those described in this paper, use a statistical 
approach [1] based on Bayes’ rule. The acoustic modeling 
components of a speech recognizer are based on hidden 
Markov models (HMMs) [1,2]. The power of an HMM 
representation lies in its ability to model the temporal 
evolution of a signal via an underlying Markov process. The 
ability of an HMM to statistically model the acoustic and 
temporal variability in speech has been integral to its success. 
The probability distribution associated with each state in an 
HMM models the variability which occurs in speech across 
speakers or phonetic context. This distribution is typically a 
Gaussian mixture model (GMM) since a GMM provides a 
sufficiently general parsimonious parametric model as well as 
an efficient and robust mathematical framework for estimation 
and analysis. 

Widespread use of HMMs for modeling speech can be 
attributed to the availability of efficient parameter estimation 
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procedures [1,2] that involve maximizing the likelihood (ML) 
of the data given the model. One of the most compelling 
reasons for the success of ML and HMMs has been the 
existence of iterative methods to estimate the parameters that 
guarantee convergence. The expectation maximization (EM) 
algorithm provides an iterative framework for ML estimation 
with good convergence properties, though it does not 
guarantee finding the global maximum [3]. 

There are, however, problems with an ML formulation for 
applications such as speech recognition. A simple example, 
shown in Fig. 1, illustrates this problem. The two classes 
shown are derived from completely separable uniform 
distributions. ML is used to fit Gaussians to these classes and 
Bayes’ rule is used to classify the data. We see that the 
decision threshold occurs inside the range of class 2. This 
results in a significant probability of error. If we were to 
simply recognize that the range of data points in class 1 is less 
than 3.3 and that no data point in class 2 occurs within this 
range, we can achieve perfect classification. 

In this example, ML training of a Gaussian model will 
never achieve perfect classification. Learning decision regions 
discriminatively will improve classification performance. The 
important point here is not that Gaussian models are 
necessarily an incorrect choice, but rather that discriminative 
approaches are a key ingredient for creating robust and more 
accurate models. Many promising techniques [4,5] have been 
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Figure 1. An example of a two-class problem where a maximum likelihood-
derived decision surface is not optimal (adapted from [4]). In the exploded 
view, the shaded region indicates the error induced by modeling the separable 
data by Gaussians estimated using maximum likelihood. This case is common 
for data, such as speech, where there is overlap in the feature space or where 
class boundaries are adjacent. 
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introduced for using discriminative techniques to improve the 
estimation of HMM parameters. 

Artificial neural networks (ANNs) represent an interesting 
and important class of discriminative techniques that have 
been successfully applied to speech recognition [6-8]. Though 
ANNs attempt to overcome many of the problems previously 
described, their shortcomings with respect to applications such 
as speech recognition are well-documented [9,10]. Some of 
the most notable deficiencies include design of optimal model 
topologies, slow convergence during training and a tendency 
to overfit the data. However, it is important to note that many 
of the fundamental ideas presented in this paper (e.g., soft 
margin classifiers) have similar implementations within an 
ANN framework. In most classifiers, controlling a trade-off 
between overfitting and good classification performance is 
vital to the success of the approach. 

In this paper, we describe the application of one particular 
discriminative approach, support vector machines (SVMs) 
[11], to speech recognition. We review the SVM approach in 
Section II, discuss applications to speech recognition in 
Section III, and present experimental results in Section IV. 
More comprehensive treatments of fundamental topics such as 
risk minimization and speech recognition applications can be 
found in [11-20]. 

 

II. SUPPORT VECTOR CLASSIFIERS 
A support vector machine (SVM) [11] is one example of a 
classifier that estimates decision surfaces directly rather than 
modeling a probability distribution across the training data. 
SVMs have demonstrated good performance on several 
classic pattern recognition problems [13]. Fig. 2 shows a 
typical 2-class problem in which the examples are perfectly 
separable using a linear decision region. H1 and H2 define 
two hyperplanes. The distance separating these hyperplanes is 
called the margin. The closest in-class and out-of-class 
examples lying on these two hyperplanes are called the 
support vectors. 

Empirical risk minimization (ERM) [11] can be used to find 
a good hyperplane, though this does not guarantee a unique 
solution. Adding an additional requirement that the optimal 
hyperplane should have good generalization properties can 
help choose the best hyperplane. The structural risk 
minimization (SRM) principle imposes structure on the 
optimization process by ordering the hyperplanes based on the 
margin. The optimal hyperplane is the one that maximizes the 
margin while minimizing the empirical risk. This indirectly 
guarantees better generalization [11]. Fig. 2 illustrates the 
differences between using ERM and SRM. 

An SVM classifier is defined in terms of the training 
examples. However, all training examples do not contribute to 
the definition of the classifier. In practice, the proportion of 
support vectors is small, making the classifier sparse. The data 
set itself defines how complex the classifier needs to be. This 
is in stark contrast to systems such as neural networks and 
HMMs where the complexity of the system is typically 
predefined or chosen through a cross-validation process. 

Real-world classification problems typically involve data 
which can only be separated using a nonlinear decision 
surface. Optimization on the input data in this case involves 
the use of a kernel-based transformation [11]: 
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Kernels allow a dot product to be computed in a higher 

dimensional space without explicitly mapping the data into 
these spaces. A kernel-based decision function has the form: 
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Two commonly used kernels explored in this study are: 
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Radial basis function (RBF) kernels are extremely popular 
though data-dependent kernels [21] have recently emerged as 
a powerful alternative. Though convergence for RBF kernels 
is typically slower than for polynomial kernels, RBF kernels 
often deliver better performance [11]. Since there are N dot 
products involved in the definition of the classifier, where N is 
the number of support vectors, the classification task scales 
linearly with the number of support vectors. 

Non-separable data is typically addressed by the use of soft 
margin classifiers. Slack variables [11] are introduced to relax 
the separation constraints: 
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Figure 2. Difference between empirical risk minimization and structural risk 
minimization for a simple example involving a hyperplane classifier. Each 
hyperplane achieves perfect classification and, hence, zero empirical risk. 
However, C0 is the optimal hyperplane because it maximizes the margin —
 the distance between the hyperplanes H1 and H2. Maximizing the margin 
indirectly results in better generalization. 
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where iy are the class assignments, w represents the weight 
vector defining the classifier, b is a bias term, and the iξ ’s 
are the slack variables. Derivation of an optimal classifier for 
this non-separable case exists and is described in detail in 
[11,12]. 

III. APPLICATIONS TO SPEECH RECOGNITION 
Hybrid approaches for speech recognition [6] provide a 

flexible paradigm to evaluate new acoustic modeling 
techniques. These systems do not entirely eliminate the HMM 
framework because classification models such as SVMs 
cannot model the temporal structure of speech effectively. 
Most contemporary connectionist systems use neural networks 
only to estimate posterior probabilities and use the HMM 
structure to model temporal evolution [6,10]. In integrating 
SVMs into such a hybrid system, several issues arise: 

Posterior Estimation: One drawback of an SVM is that 
it provides an m-ary decision. Most signal processing 
applications however need a posterior probability that 
captures our uncertainty in classification. This issue is 
particularly important in speech recognition because there is 
significant overlap in the feature space. SVMs provide a 
distance or discriminant which can be used to compare 
classifiers. This is unlike connectionist systems whose output 
activations are estimates of the posterior class 
probabilities [6,7].  

One of the main concerns in using SVMs for speech 
recognition is the lack of a clear relationship between distance 
from the margin and the posterior class probability. A variety 
of options for converting the posterior to a probability were 
analyzed in [18] including Gaussian fits and histogram 
approaches. These methods are not Bayesian in nature in that 
they do not account for the variability in the estimates of the 
SVM parameters. Ignoring this variability in the estimates 
often results in overly confident predictions by the classifiers 
on the test set [22]. 

Kwok [14] and Platt [15] have extensively studied the use 
of moderated SVM outputs as estimates of the posterior 
probability. Kwok’s work also discusses the relationship 
between the SVM output and the evidence framework. We 
chose unmoderated probability estimates based on ML fitting 
as a trade-off between computational complexity and error 
performance. We used a sigmoid distribution to map the 
output distances to posteriors: 
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As suggested by Platt, the parameters A and B can be 
estimated using a model-trust minimization algorithm [23]. An 
example of the fit for a typical classifier is shown in Fig. 3. 

Note that we have assumed that the prior class 
probabilities are equal. An issue that arises from this 
formulation of estimating posteriors is that the distance 

estimates are heavily biased by the training data. In order to 
avoid biased estimates, a cross-validation set must be used to 
estimate the parameters of the sigmoid [15]. The size of this 
data set can be determined based on the amount of training 
data that is available for the classifier. 

Classifier Design: A fundamental issue in classifier 
design is whether the classifiers should be one-vs-one 
classifiers, which learn to discriminate one class from another 
class, or one-vs-all, which learn to discriminate one class from 
all other classes. One-vs-one classifiers are typically smaller 
and less complex and can be estimated using fewer resources 
than one-vs-all classifiers. When the number of classes is N 
we need to estimate N(N-1)/2 one-vs-one classifiers as 
compared to  one-vs-all classifiers. On several standard 
classification tasks it has been proven that one-vs-one 
classifiers are marginally more accurate than one-vs-all 
classifiers [16,17]. Nevertheless, for computational efficiency, 
we chose to use one-vs-all classifiers in all experiments 
reported here. 

Segmental Modeling: A logical step in building a hybrid 
system would be to replace the Bayes classifier in a traditional 
HMM system with an SVM classifier at the frame level. 
However, the amount of training data and the confusion 
inherent in frame-level acoustic feature vectors prevents this 
at the current time. Though very efficient optimizers are used 
to train an SVM, it is still not computationally feasible to train 
on all data available in the large corpora used in this study. In 
our work, we have chosen to use a segment-based approach to 
avoid these issues. This allows every classifier to use all 
positive examples in the corpora and an equal number of 
randomly-selected negative examples. 

The other motivating factor for most segment-based 
approaches [24] is that the acoustic model needs to capture 
both the temporal and spectral structure of speech that is 
clearly missing in frame-level classification schemes. 
Segmental approaches also overcome the assumption of 
conditional independence between frames of data in 
traditional HMM systems. Segmental data takes better 
advantage of the correlation in adjacent frames of speech data. 

A related problem is the variable length or duration 
problem. Segment durations are correlated with the word 
choice and speaking rate, but are difficult to exploit in an 

 
Figure 3. A sigmoid fit to the SVM distance-based posterior. 
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SVM-type framework. A simple but effective approach 
motivated by the 3-state HMMs used in most state-of-the-art 
speech recognition systems is to assume that the segments 
(phones in most cases) are composed of a fixed number of 
sections [10,24]. The first and third sections model the 
transition into and out of the segment, while the second 
section models the stable portion of the segment. We use 
segments composed of three sections in all recognition 
experiments reported in this work. The segment vector is then 
augmented with the logarithm of the duration of the phone 
instance to explicitly model the variability in duration. 

Fig. 4 demonstrates the construction of a composite 
vector for a phone segment. SVM classifiers in our hybrid 
system operate on such composite vectors. The composite 
segment feature vectors are based on the alignments from a 
baseline 3-state Gaussian-mixture HMM system. The length 
of the composite vector is dependent on the number of 
sections in each segment and the dimensionality of the frame-
level feature vectors. For example, with a 39-dimensional 
feature vector at the frame level and 3 sections per segment, 
the composite vector has a dimensionality of 117. SVM 
classifiers are trained on these composite vectors and 
recognition is also performed using these segment-level 
composite vectors. 
 N-best List Rescoring: As a first step towards building a 
stand-alone hybrid SVM/HMM system for continuous speech 
recognition, we have explored a simple N-best list rescoring 
paradigm. Assuming that we have already trained the SVM 
classifiers for each phone in the model inventory, we generate 
N-best lists using a conventional HMM system. A model-level 
alignment for each hypothesis in the N-best list is then 
generated using the HMM system. Segment-level feature 
vectors are generated from these alignments. These segments 
are then classified using the SVMs. Posterior probabilities are 
computed using the sigmoid approximation previously 
discussed which are then used to compute the utterance 
likelihood of each hypothesis in the N-best list. The N-best list 
is reordered based on the likelihood and the top hypothesis is 
used to calibrate the performance of the system. An overview 
of the resulting hybrid system is shown in Fig. 5.  

The above framework allows the SVM to rescore each N-
best entry against the corresponding segmentation derived by 
a Viterbi alignment. It is also instructive to fix the 
segmentation so that each N-best entry is rescored against a 

single, common, segment-level feature stream. One approach 
to accomplishing this, which represents our second 
segmentation method, is to define a single feature stream by 
Viterbi-aligning the 1-best hypothesis generated by the 
baseline HMM system. A third segmentation approach uses a 
feature stream derived from the reference transcription to 
investigate the lower error bound when a perfect segmentation 
is available. These three segmentation methods are explored in 
the experiments below. 

 

IV. EXPERIMENTAL RESULTS 
We evaluated our SVM approach on three popular tasks: 

Deterding vowel classification [25], OGI Alphadigits [26] and 
Switchboard [27]. In these experiments, we compared the 
performance of the SVM approach to a baseline HMM system 
that was used to generate segmentations. In this section, we 
also present a detailed discussion of the classifier design in 
terms of data distribution and parameter selection. 

A. Static Pattern Classification 
The Deterding vowel data [25] is a relatively simple but 

popular static classification task used to benchmark nonlinear 
classifiers. In this evaluation, the speech data was collected at 
a 10 kHz sampling rate and low pass filtered at 4.7 kHz. The 
signal was then transformed to 10 log-area parameters. A 
window duration of 50 msec. was used for generating the 
features. The training set consisted of 528 frames from eight 
speakers and the test set consisted of 462 frames from a 
different set of seven speakers. The speech data consisted of 
11 vowels uttered by each speaker in an h*d context.  

A traditional method for estimating an RBF classifier 
involves finding the RBF cluster centers for each class 
separately using a clustering mechanism such as 
K-MEANS [28]. We estimate weights corresponding to each 
cluster center to complete the definition of the classifier. The 
goal of the optimization process is typically not improved 
discrimination, but better representation. The training process 
requires using heuristics to determine the number of cluster 
centers. In contrast, the SVM approach for estimating RBF 

 
Figure 5. Composition of the segment level feature vector assuming a 3-4-3 
proportion for the three sections. 

 
Figure 4. An overview of a hybrid HMM/SVM system based on an N-best list 
rescoring paradigm. 



T-SP-01444-2003.R2 5

classifiers is more elegant where the number of centers 
(support vectors in this case) and their weights are learned 
automatically in a discriminative framework. 

The parameters of interest in tuning an RBF kernel 
are Ψ , the variance of the kernel and C, the parameter used to 
penalize training errors during SVM estimation [11,18]. 
Table 1 shows the performance of SVMs using RBF kernels 
for a wide range of parameter values. The results clearly 
indicate that the performance of the classifiers is very closely 
tied to the parameter setting, though there exists a pretty wide 
range of values for which performance is comparable. 
Another interesting observation is the effect of C on the 
performance. Note that for values of C greater than 20 the 
performance does not change. This suggests that a penalty of 
20 has already accounted for all overlapped data and a larger 
value of C will have no additional benefit. 

Table 2 presents results comparing two types of SVM 
kernels to a variety of other classification schemes. A detailed 
description of the conditions for this experiment are described 
in [18]. Performance using the RBF kernel was better than 
most nonlinear classification schemes. The best performance 
we report is 35%. This is worse than the best performance 
reported on this data set (30% using a speaker adaptation 
scheme called Separable Mixture Models [29]), but 
significantly better than the best neural network classifiers 
(e.g., Gaussian Node Network) [8]. We have observed similar 
trends on a variety of static classification tasks [30] and recent 
publications on applications of SVMs to other speech 
problems [31] report similar findings. 

B. Spoken Letters and Numbers 
We next evaluated this approach on a small vocabulary 

continuous speech recognition task: OGI Alphadigits (AD) 
[26]. This database consists of spoken letters and numbers 
recorded over long distance telephone lines. These words are 
extremely confusable for telephone-quality speech (e.g., “p” 
vs. “b”). AD is an extremely challenging task from an acoustic 
modeling standpoint since the language model, a “self-loop” 
in which each letter or number can occur an arbitrary number 
of times and can follow any other letter or number, provides 
no predictive power. 

A baseline HMM system described in [18] was used to 
generate segmented training data by Viterbi-aligning the 
training reference transcription to the acoustic data. The time 
marks derived from this Viterbi alignment were used to 
extract the segments. Before extraction, each feature 
dimension was normalized to the range [-1,1] to improve the 
convergence properties of the quadratic optimizers used as 
part of the SVM estimation utilities in SVMLight [32]. For 
each phone instance in the training transcription, a segment 
was extracted. This segment was divided into three parts as 
shown in Figure  . An additional parameter describing the log 
of the segment duration was added to yield a composite vector 
of size 3 * 39 features + 1 log duration = 118 features. Once 
the training sets were generated for all the classifiers, the 
SVMLight utilities were used to train each of the 29 phone 
SVM models. 

For each phone, an SVM model was trained to 
discriminate between this phone and all other phones (one-vs-
all models), generating a total of 29 models. In order to limit 
the number of samples (especially the out-of-class data) that is 
required by each classifier, a heuristic data selection process 
was used that required the training set to consist of equal 
amounts of within-class and out-of-class data. All within-class 
data available for a phone is by default part of the training set. 
The out-of-class data was randomly chosen such that one half 
of the out-of-class data came from phones that were 
phonetically similar to the phone of interest and one half came 
from all other phones [18]. 

Table 3 gives the performance of the hybrid SVM system 
as a function of the kernel parameters. These results were 
generated with 10-best lists whose total list error (the error 
inherent in the lists themselves) was 4.0%. The list error rate 
is the best performance any system can achieve by 
postprocessing these N-best lists. Though we would ideally 
like this number to be as close to zero as possible, the 
constraints placed by the limitations of the knowledge sources 
used in the system (acoustic models, language models etc.) 
force this number to be nonzero. In addition, the size of the N-
best list was kept small to minimize computational 
complexity. 

The goal in SRM is to build a classifier which balances 
generalization with discrimination on the training set. Table 3 
shows how the RBF kernel parameter is used as a tuning 
parameter to achieve this balance. As gamma increases, the 
variance of the RBF kernel decreases. This in turn produces a 

 
Table 1. Effect of the kernel parameters on the classification performance of 
RBF kernel-based SVMs on the Deterding vowel classification task. 

 
Table 2. The SVM classifier using an RBF kernel provides significantly better 
performance than most other comparable classifiers on the Deterding vowel 
classification task. 
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narrower support region in a high-dimensional space. This 
support region requires a larger number of support vectors and 
leads to overfitting as shown when gamma is set to 5.0. As 
gamma decreases, the number of support vectors decreases, 
which leads to a smoother decision surface. Eventually, we 
reduce the number of support vectors to a point where the 
decision region is overly smooth (gamma = 0.1), and 
performance degrades. 

As with the vowel classification data, RBF kernel 
performance was superior to the polynomial kernel. In 
addition, as we observed in the vowel classification task, the 
generalization performance was fairly flat for a wide range of 
kernel parameters. The segmentation derived from the 1-best 
hypothesis from the baseline HMM resulted in an 
11.0% WER using an RBF kernel. To provide an equivalent 
and fair comparison with the HMM system we have rescored 
the 10-best lists with the baseline HMM system. Using a 
single segmentation to rescore the 10-best lists does force a 
few hypothesis in the lists to become inactive because of the 
duration constraints. The effective average list size after 
eliminating hypotheses that do not satisfy the duration 
constraints imposed by the segmentation is 6.9. The result for 
the baseline HMM system using these new N-best lists 
remains the same indicating that the improvements provided 
by the hybrid-system are indeed because of better classifiers 
and not the smaller search space. 

As a point of reference, we also produced results in 
Table 3 that used the reference transcription to generate the 
segments. Using this oracle segmentation (generated using the 
reference transcription for Viterbi alignment), the best 
performance obtained on this task was 7.0% WER. This is a 
36% relative improvement in performance over the best 
configuration of the hybrid system using hypothesis-based 
segmentations. The effective average list size after eliminating 
hypotheses that do not satisfy the duration constraints imposed 
by the oracle segmentation was 6.7. This experiment shows 
that SVMs efficiently lock on to good segmentations. 
However, when we let SVMs choose the best segmentation 
and hypothesis combination by using the N-best 
segmentations, the performance gets worse (11.8% WER as 
shown in Table 4). This apparent anomaly suggests the need 
to incorporate variations in segmentation into the classifier 

estimation process. Relaxing this strong interdependence 
between the segmentation and the SVM performance is a 
point for further research. 

C. Conversational Speech 
The Switchboard (SWB) [27] task, which is based on 

two-way telephone recordings of conversational speech, is 
very different from the AD task in terms of acoustic 
confusability and classifier complexity. The baseline HMM 
system for this task performs at 41.6% WER. We followed a 
similar SVM training process to that which was described for 
the AD task. We estimated 43 classifiers for SWB. Since a 
standard cross-validation set does not exist for this task, we 
used 90,000 utterances from 60 hours of training data. The 
cross-validation set consisted of 24,000 utterances. We limited 
the number of positive examples for any classifier to 30,000. 
These positive examples were chosen at random. 

A summary of our SWB results are shown in Table 4. In 
the first experiment we used a segmentation derived from the 
baseline HMM system’s top hypothesis to rescore the N-best 
list. This hybrid setup does improve performance over the 
baseline, albeit only marginally — 40.6% compared to a 
baseline of 41.6%. The second experiment was performed by 
using N segmentations to rescore each of the utterances in the 
N-best lists. From the experimental results on the AD task we 
expected the performance with this setup to be worse than 
40.6%. The performance of the system did indeed get worse 
— 42.1% WER. When HMM models were used instead of 
SVMs with the same setup, the HMM system achieved a 
WER of 42.3% compared to the baseline of 41.6%. From this 
result we deduce that the lack of any language modeling 
information when we reorder the N-best lists is the reason for 
this degradation in performance. 

The next experiment was an oracle experiment. Use of 
the reference segmentation to rescore the N-best list gave a 
WER of 36.1%, confirming our hypothesis that the 
segmentation issue needs further exploration. A second set of 
oracle experiments evaluated the richness of N-best lists. The 
N-best list error rate was artificially reduced to 0% by adding 
the reference to the original 10-best lists. Rescoring these new 
N-best lists using the corresponding segmentations resulted in 

Table 4. Comparison of word error rates on the Alphadigits task as a function 
of the RBF kernel width (gamma) and the polynomial kernel order. Results are 
shown for a 3-4-3 segment proportion with the error penalty, C, set to 50. The 
WER for the baseline HMM system is 11.9%. 

Table 3. Experimental results comparing the baseline HMM system to a new 
hybrid SVM/HMM system. The hybrid system marginally outperforms the 
HMM system when used as a post-processor to the output of the HMM system 
where the segmentation is derived using the hypothesis of the HMM system. 
However, when the reference transcription is included, or when the reference 
based segmentation is used, SVMs offer a significant improvement.  
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error rates of 38.1% and 9.1% WER on SWB and AD 
respectively. The HMM system under a similar condition 
improves performance to 38.6%. On AD the HMM system 
does not improve performance over the baseline even when 
the reference (or correct) transcription is added to the N-best 
list. This result suggests that SVMs are very sensitive to 
segmentations and can perform well if accurate segmentations 
are available. 

Another set of experiments were run to quantify the 
absolute ceiling in performance improvements the SVM 
hybrid system can provide. This ceiling can be achieved when 
we use the hybrid system to rescore the N-best lists that 
include the reference transcription and the reference-based 
segmentation. Using this setup the system gives a WER of 
5.8% on SWB and 3.3% on AD. This huge improvement 
should not be mistaken to be a real improvement in 
performance for two reasons. First, we cannot guarantee that 
the reference segmentation is available at all times. Second, 
generating N-best lists with 0% WER is extremely difficult, if 
not impossible for conversational speech. This improvement 
should rather be viewed as an indication of the fact that by 
using good segmentations to rescore good N-best lists, the 
SVM/HMM hybrid system has a potential to improve 
performance. Also, using matched training and test 
segmentations seems to improve performance dramatically. 

Table 4 summarizes the important results in terms of 
the various segmentations and N-best lists that were processed 
to arrive at the final hypothesis. The key point to be noted 
here is that experiments 2 and 4 are designed such that both 
the hybrid system and the HMM system are operating under 
the same conditions and offer a fair comparison of the two 
systems. For these experiments, since we reorder N-best lists 
by using segmentations corresponding to each of the 
hypothesis in the list, both systems have the opportunity to 
evaluate the same segments. On the other hand if we were to 
run the experiments using a single segmentation (experiment 1 
for example), the HMM system cannot use the segmentation 
information while the hybrid system can. Experiments 2 and 4 
are key in order to compare both systems from a common 
point of reference. Experiment 4 suggests that when the HMM 
and hybrid system process good segmentations and rich N-
best lists, the hybrid system outperforms the HMM system — 
significantly in the case of AD and marginally on SWB. 

 

V. CONCLUSIONS 
This paper addresses the use of a support vector machine 

as a classifier in a continuous speech recognition system. The 
technology has been successfully applied to two speech 
recognition tasks. A hybrid SVM/HMM system has been 
developed which uses SVMs to post-process data generated 
by a conventional HMM system. The results obtained in the 
experiments clearly indicate the classification power of SVMs 
and affirm the use of SVMs for acoustic modeling. The oracle 
experiments reported here clearly show the potential of this 

hybrid system while highlighting the need for further research 
into the segmentation issue. 

Our ongoing research into new acoustic modeling 
techniques for speech recognition is taking two directions. 
First, it is clear that for a formalism such as SVMs, there is a 
need for an iterative SVM classifier estimation process 
embedded within the learning loop of the HMM system to 
expose the classifier to the same type of ambiguity observed 
during recognition. This should be done in a way similar to 
the implicit integration of optimal segmentation and 
MCE/MMI-based discriminative training of HMMs [4,5]. 
Mismatched training and evaluation conditions are dangerous 
for recognition experiments. Second, the basic SVM 
formalism suffers from three fundamental problems: 
scalability, sparsity, and Bayesian-ness. Recent related 
research [20] based on relevance vector machines (RVM) 
directly addresses the last two issues. 

Finally, the algorithms, software, and recognition systems 
described in this work are available in the public domain as 
part of our speech recognition toolkit (see 
http://www.isip.msstate.edu/ projects/speech/software). 
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