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ABSTRACT

Statistical techniques based on hidden Markov Models (HMMs) with Gaussian emission

densities have dominated signal processing and pattern recognition literature for the past 20 years.

However, HMMs trained using maximum likelihood techniques suffer from an inability to learn

discriminative information and are prone to overfitting and over-parameterization. Recent work in

machine learning has focused on models, such as the support vector machine (SVM), that

automatically control generalization and parameterization as part of the overall optimization

process. In this paper, we show that SVMs provide a significant improvement in performance on a

static pattern classification task based on the Deterding vowel data. We also describe an

application of SVMs to large vocabulary speech recognition, and demonstrate an improvement in

error rate on a continuous alphadigit task (OGI Aphadigits) and a large vocabulary conversational

speech task (Switchboard). Issues related to the development and optimization of an SVM/HMM

hybrid system are discussed.

Please direct all correspondence to:Joseph Picone, 413 Simrall, Hardy Road, Box 9571,
Mississippi State, MS 39762, USA, Email: picone@isip.msstate.edu, Phone: (662) 325-3149,
Fax: (662) 325-2298.

1. This material is based upon work supported by the National Science Foundation under Grant No. IIS-0095940.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation.



APPLICATIONS OF SUPPORT VECTOR MACHINES  .... PAGE 1 OF 28

chine

those

deling

. The

l via

and

ution

cross

MM)

s an

ient

data

been

ce. The

ion

m [3].

eech

sses

ns to

d occurs

ply
1. INTRODUCTION

Speech recognition systems have become one of the premier applications for ma

learning and pattern recognition technology. Modern speech recognition systems, including

described in this paper, use a statistical approach [1] based on Bayes’ rule. The acoustic mo

components of a speech recognizer are based on hidden Markov models (HMMs) [1,2]

power of an HMM representation lies in its ability to model the temporal evolution of a signa

an underlying Markov process. The ability of an HMM to statistically model the acoustic

temporal variability in speech has been integral to its success. The probability distrib

associated with each state in an HMM models the variability which occurs in speech a

speakers or phonetic context. This distribution is typically a Gaussian mixture model (G

since a GMM provides a sufficiently general parsimonious parametric model as well a

efficient and robust mathematical framework for estimation and analysis.

Widespread use of HMMs for modeling speech can be attributed to the availability of effic

parameter estimation procedures [1,2] that involve maximizing the likelihood (ML) of the

given the model. One of the most compelling reasons for the success of ML and HMMs has

the existence of iterative methods to estimate the parameters that guarantee convergen

expectation maximization (EM) algorithm provides an iterative framework for ML estimat

with good convergence properties, though it does not guarantee finding the global maximu

There are, however, problems with an ML formulation for applications such as sp

recognition. A simple example, shown in Figure 1, illustrates this problem. The two cla

shown are derived from completely separable uniform distributions. ML is used to fit Gaussia

these classes and Bayes’ rule is used to classify the data. We see that the decision threshol

inside the range of class 2. This results in a significant probability of error. If we were to sim
IEEE TRANS. SIGNAL PROCESSING REVISION 3.0 MARCH 18, 2004
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recognize that the range of data points in class 1 is less than 3.3 and that no data point in

occurs within this range, we can achieve perfect classification.

In this example, ML training of a Gaussian model will never achieve perfect classifica

Learning decision regions discriminatively will improve classification performance.

important point here is not that Gaussian models are necessarily an incorrect choice, but

that discriminative approaches are a key ingredient for creating robust and more accurate m

Many promising techniques [4,5] have been introduced for using discriminative techniqu

improve the estimation of HMM parameters.

Artificial neural networks (ANNs) represent an interesting and important class

discriminative techniques that have been successfully applied to speech recognition [6-8]. T

ANNs attempt to overcome many of the problems previously described, their shortcomings

respect to applications such as speech recognition are well-documented [9,10]. Some of th

notable deficiencies include design of optimal model topologies, slow convergence d

training and a tendency to overfit the data. However, it is important to note that many o

fundamental ideas presented in this paper (e.g., soft margin classifiers) have s

implementations within an ANN framework. In most classifiers, controlling a trade-off betw

overfitting and good classification performance is vital to the success of the approach.

In this paper, we describe the application of one particular discriminative approach, su

vector machines (SVMs) [11], to speech recognition. We review the SVM approach in Secti

discuss applications to speech recognition in Section 3, and present experimental results o

prototype recognition systems in Section 4. More comprehensive treatments of fundam

topics such as risk minimization and speech recognition applications can be found in [11-2
IEEE TRANS. SIGNAL PROCESSING REVISION 3.0 MARCH 18, 2004
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2. SUPPORT VECTOR CLASSIFIERS

A support vector machine (SVM) [11] is one example of a classifier that estimates dec

surfaces directly rather than modeling a probability distribution across the training data. S

have demonstrated good performance on several classic pattern recognition problem

Figure 2 shows a typical 2-class problem in which the examples are perfectly separable u

linear decision region. and define two hyperplanes. The distance separating

hyperplanes is called themargin. The closest in-class and out-of-class examples lying on th

two hyperplanes are called thesupport vectors.

Empirical risk minimization (ERM) [11] can be used to find a good hyperplane, though

does not guarantee a unique solution. Adding an additional requirement that the op

hyperplane should have good generalization properties can help choose the best hyperpla

structural risk minimization (SRM) principle imposes structure on the optimization proces

ordering the hyperplanes based on the margin. The optimal hyperplane is the one that max

the margin while minimizing the empirical risk. This indirectly guarantees be

generalization [11]. Figure 2 illustrates the differences between using ERM and SRM.

An SVM classifier is defined in terms of the training examples. However, all train

examples do not contribute to the definition of the classifier. In practice, the proportion of su

vectors is small, making the classifier sparse. The data set itself defines how complex the cla

needs to be. This is in stark contrast to systems such as neural networks and HMMs whe

complexity of the system is typically predefined or chosen through a cross-validation proce

Real-world classification problems typically involve data which can only be separated us

nonlinear decision surface. Optimization on the input data in this case involves the use

kernel-based transformation [11]:

H1 H2

x

IEEE TRANS. SIGNAL PROCESSING REVISION 3.0 MARCH 18, 2004
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Kernels allow a dot product to be computed in a higher dimensional space without expl

mapping the data into these spaces. A decision function based on a kernel has the form:

. (2)

Two commonly used kernel functions explored in this study are:

 — polynomial with degree (3)

 — radial basis function (4)

Radial basis function (RBF) kernels are extremely popular though data-dependent kerne

have recently emerged as a powerful alternative. Though convergence for RBF kernels is typ

slower than for polynomial kernels, RBF kernels often deliver better performance [11]. S

there are dot products involved in the definition of the classifier, where is the numbe

support vectors, the classification task scales linearly with the number of support vectors.

Non-separable data is typically addressed by the use of soft margin classifiers.

variables [11] are introduced to relax the separation constraints:

, (5)

, and (6)

, (7)

where are the class assignments, represents the weight vector defining the classifier

bias term, and the ‘s are the slack variables. Derivation of an optimal classifier for

non-separable case exists and is described in detail in [11,12].

K xi xj,( ) Φ xi( ) Φ xj( )⋅=

f x( ) αi yiK x xi,( ) b+
i 1=

N

∑=

K x y,( ) x y⋅ 1+( )d
= d

K x y,( ) ϒ x y–
2

–{ }exp=

N N

xi w⋅ b+ +1 ξi–≥ for yi +1=

xi w⋅ b+ 1– ξi+≤ for yi 1–=

ξi 0≥ i∀

yi w b

ξ
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3. APPLICATIONS TO SPEECH RECOGNITION

Hybrid approaches for speech recognition [6] provide a flexible paradigm to evaluate

acoustic modeling techniques. These systems are not able to eliminate the HMM frame

entirely because classification models such as SVMs cannot model the temporal struct

speech effectively. Most contemporary connectionist systems use neural networks on

estimate posterior probabilities and use the HMM structure to model temporal evolution [6,1

integrating SVMs into such a hybrid system, several issues arise:

Posterior Estimation: One drawback of an SVM is that it provides an m-ary decision. M

signal processing applications however need a posterior probability that captures our unce

in the classification. This issue is particularly significant in speech recognition because the

large degree of overlap in the feature space. SVMs provide a distance or discriminant whic

be used to compare classifiers. This is unlike connectionist systems whose output activatio

estimates of the posterior class probabilities [6,7].

One of the main concerns in using SVMs for speech recognition is the lack of a c

relationship between distance from the margin and the posterior class probability. A varie

options for converting the posterior to a probability were analyzed in [18] including Gaussia

and histogram approaches. These methods are not Bayesian in nature in that they do not

for the variability in the estimates of the SVM parameters. Ignoring this variability in

estimates often results in overly confident predictions by the classifiers on the test set [22].

Kwok [14] and Platt [15] have extensively studied the use of moderated SVM output

estimates of the posterior probability. Kwok’s work also discusses the relationship betwee

SVM output and the evidence framework. We chose unmoderated probability estimates ba

ML fitting as a trade-off between computational complexity and error performance. We us
IEEE TRANS. SIGNAL PROCESSING REVISION 3.0 MARCH 18, 2004
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sigmoid distribution to map the output distances to posteriors:

. (8)

As suggested by Platt, the parameters and can be estimated using a mode

minimization algorithm [23]. An example of the fit for a typical classifier is shown in Figure 3

Note that we have assumed that the prior class probabilities are equal. An issue that

from this formulation of estimating posteriors is that the distance estimates are heavily bias

the training data. In order to avoid biased estimates, a cross-validation set must be u

estimate the parameters of the sigmoid [15]. The size of this data set can be determined ba

the amount of training data that is available for the classifier.

Classifier Design:A fundamental issue in classifier design is whether the classifiers shoul

one-vs-one classifiers, which learn to discriminate one class from another class, or one

classifiers, which learn to discriminate one class from all other classes. One-vs-one classifi

typically smaller and less complex and can be estimated using fewer resources than one

classifiers. When the number of classes is we need to estimate one-v

classifiers as compared to one-vs-all classifiers. On several standard classification task

been proven that one-vs-one classifiers are marginally more accurate than one

classifiers [16,17]. Nevertheless, for computational efficiency, we chose to use one-

classifiers in all experiments reported here.

Segmental Modeling:A logical step in building a hybrid system would be to replace the Bay

classifier in a traditional HMM system with an SVM classifier at the frame level. However,

amount of training data and the confusion inherent in frame-level acoustic feature ve

prevents this at the current time. Though very efficient optimizers are used to train an SVM

p y 1 f=( ) 1
1 Af B+( )exp+
----------------------------------------=

A B

N N N 1–( ) 2⁄

N
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still not computationally feasible to train on all data available in the large corpora used in

study. In our work, we have chosen to use a segment-based approach to avoid these issu

allows every classifier to use all positive examples in the corpora and an equal numb

randomly-selected negative examples.

The other motivating factor for most segment-based approaches [24] is that the ac

model needs to capture both the temporal and spectral structure of speech that is clearly m

in frame-level classification schemes. Segmental approaches also overcome the assump

conditional independence between frames of data in traditional HMM systems. Segmenta

takes better advantage of the correlation in adjacent frames of data that is inherent in spee

A related problem is the variable length or duration problem. Segment durations are corr

with the word choice and speaking rate, but are difficult to exploit in an SVM-type framewor

simple but effective approach motivated by the 3-state HMMs used in most state-of-the-art s

recognition systems is to assume that the segments (phones in most cases) are compo

fixed number of sections [10,24]. The first and third sections model the transition into and o

the segment, while the second section models the stable portion of the segment. We use se

composed of three sections in all recognition experiments reported in this work. The seg

vector is then augmented with the logarithm of the duration of the phone instance to exp

model the variability in duration.

Figure 4 demonstrates the construction of a composite vector for a phone segment.

classifiers in our hybrid system operate on such composite vectors. The composite se

feature vectors are based on the alignments from a baseline 3-state Gaussian-mixture

system. The length of the composite vector is dependent on the number of sections in

segment and the dimensionality of the frame-level feature vectors. For example, w
IEEE TRANS. SIGNAL PROCESSING REVISION 3.0 MARCH 18, 2004
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[25],
39-dimensional feature vector at the frame level and 3 sections per segment, the composite

has a dimensionality of 117. SVM classifiers are trained on these composite vectors

recognition is also performed using these segment-level composite vectors.

N-best List Rescoring:As a first step towards building a stand-alone hybrid SVM/HMM syste

for continuous speech recognition, we have explored a simple N-best list rescoring para

Assuming that we have already trained the SVM classifiers for each phone in the model inve

we generate N-best lists using a conventional HMM system. A model-level alignment for

hypothesis in the N-best list is then generated using the HMM system. Segment-level fe

vectors are generated from these alignments. These segments are then classified using the

Posterior probabilities are computed using the sigmoid approximation previously discussed

are then used to compute the utterance likelihood of each hypothesis in the N-best list. The

list is reordered based on the likelihood and the top hypothesis is used to calibrat

performance of the system. An overview of the resulting hybrid system is shown in Figure 5

The above framework allows the SVM to rescore each N-best entry against the correspo

segmentation derived by a Viterbi alignment. It is also instructive to fix the segmentation so

each N-best entry is rescored against a single, common, segment-level feature stream

approach to accomplishing this, which represents our second segmentation method, is to d

single feature stream by Viterbi-aligning the 1-best hypothesis generated by the baseline

system. A third segmentation approach uses a feature stream derived from the ref

transcription to investigate the lower error bound when a perfect segmentation is available.

three segmentation methods are explored in the experiments described below.

4. EXPERIMENTAL RESULTS

We evaluated our SVM approach on three popular tasks: Deterding vowel classification
IEEE TRANS. SIGNAL PROCESSING REVISION 3.0 MARCH 18, 2004
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OGI Alphadigits [26] and Switchboard [27]. In these experiments, we compared the perform

of the SVM approach to a baseline HMM system that was used to generate segmentations.

section, we also present a detailed discussion of the classifier design in terms of data distr

and parameter selection.

4.1. Static Pattern Classification

The Deterding vowel data [25] is a relatively simple but popular static classification task

to benchmark nonlinear classifiers. In this evaluation, the speech data was collected at a 1

sampling rate and low pass filtered at 4.7 kHz. The signal was then transformed to 10 log

parameters. A window duration of 50 msec. was used for generating the features. The train

consisted of 528 frames from eight speakers and the test set consisted of 462 frames

different set of seven speakers. The speech data consisted of 11 vowels uttered by each sp

an h*d context.

A traditional method for estimating an RBF classifier involves finding the RBF cluster cen

for each class separately using a clustering mechanism such as K-MEANS [28]. We es

weights corresponding to each cluster center to complete the definition of the classifier. Th

of the optimization process used to compute the weights is typically not improved discrimina

but better representation. The training process requires using heuristics to determine the n

of cluster centers. In contrast, the SVM approach for estimating RBF classifiers is more e

where the number of centers (support vectors in this case) and their weights are le

automatically in a discriminative framework.

The parameters of interest in tuning an RBF kernel are , the variance of the kernel an

the parameter used to penalize training errors during SVM estimation [11,18]. Table 1 show

performance of SVMs using RBF kernels for a wide range of parameter values. The re

ϒ C
IEEE TRANS. SIGNAL PROCESSING REVISION 3.0 MARCH 18, 2004
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clearly indicate that the performance of the classifiers is very closely tied to the parameter s

though there exists a pretty wide range of values for which performance is comparable. An

interesting observation is the effect of on the performance. Note that for values of gr

than 20 the performance does not change. This suggests that a penalty of 20 has a

accounted for all overlapped data and a larger value of  will have no additional benefit.

Table 2 presents results comparing two types of SVM kernels to a variety of o

classification schemes. A detailed description of the conditions for this experiment are des

in [18]. Performance using the RBF kernel was better than most nonlinear classification sch

The best performance we report is 35%. This is worse than the best performance reported

data set (30% using a speaker adaptation scheme called Separable Mixture Models [29

significantly better than the best neural network classifiers (e.g., Gaussian Node Network) [8

have observed similar trends on a variety of static classification tasks [30] and recent public

on applications of SVMs to other speech problems [31] report similar findings.

4.2. Spoken Letters and Numbers

We next evaluated this approach on a small vocabulary continuous speech recognition

OGI Alphadigits (AD) [26]. This database consists of spoken letters and numbers recorded

long distance telephone lines. These words are extremely confusable for telephone-quality

(e.g., “p” vs. “b”). AD is an extremely challenging task from an acoustic modeling standp

since the language model, a “self-loop” in which each letter or number can occur an arb

number of times and can follow any other letter or number, provides no predictive power.

A baseline HMM system described in [18] was used to generate segmented training d

Viterbi-aligning the training reference transcription to the acoustic data. The time marks de

from this Viterbi alignment were used to extract the segments. Before extraction, each fe

C C

C

IEEE TRANS. SIGNAL PROCESSING REVISION 3.0 MARCH 18, 2004
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dimension was normalized to the range [-1,1] to improve the convergence properties o

quadratic optimizers used as part of the SVM estimation utilities in SVMLight [32]. For e

phone instance in the training transcription, a segment was extracted. This segment was d

into three parts as shown in Figure 4. An additional parameter describing the log of the se

duration was added to yield a composite vector of size 3 * 39features + 1 log duration = 118

features. Once the training sets were generated for all the classifiers, the SVMLight utilities

used to train each of the 29 phone SVM models.

For each phone, an SVM model was trained to discriminate between this phone and all

phones (one-vs-all models), generating a total of 29 models. In order to limit the numb

samples (especially the out-of-class data) that is required by each classifier, a heuristi

selection process was used that required the training set to consist of equal amou

within-class and out-of-class data. All within-class data available for a phone is by default p

the training set. The out-of-class data was randomly chosen such that one half of the out-o

data came from phones that were phonetically similar to the phone of interest and one half

from all other phones [18].

Table 3 gives the performance of the hybrid SVM system as a function of the ke

parameters. These results were generated with 10-best lists whose total list error (the

inherent in the lists themselves) was 4.0%. The list error rate is the best performance any s

can achieve by postprocessing these N-best lists. Though we would ideally like this numbe

as close to zero as possible, the constraints placed by the limitations of the knowledge s

used in the system (acoustic models, language models etc.) force this number to be nonz

addition, the size of the N-best list was kept small to minimize computational complexity.

The goal in SRM is to build a classifier which balances generalization with discriminatio
IEEE TRANS. SIGNAL PROCESSING REVISION 3.0 MARCH 18, 2004
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the training set. Table 3 shows how the RBF kernel parameter is used as a tuning param

achieve this balance. As gamma increases, the variance of the RBF kernel decreases. This

produces a narrower support region in a high-dimensional space. This support region req

larger number of support vectors and leads to overfitting as shown when gamma is set to 5

gamma decreases, the number of support vectors decreases, which leads to a smoother

surface. Eventually, we reduce the number of support vectors to a point where the decision

is overly smooth (gamma = 0.1), and performance degrades.

As with the vowel classification data, RBF kernel performance was superior to the polyno

kernel. In addition, as we observed in the vowel classification task, the generaliz

performance was fairly flat for a wide range of kernel parameters. The segmentation derived

the 1-best hypothesis from the baseline HMM resulted in a 11.0% WER using an RBF kern

provide an equivalent and fair comparison with the HMM system we have rescored the 10

lists with the baseline HMM system. Using a single segmentation to rescore the 10-best list

force a few hypothesis in the lists to become inactive because of the duration constraint

effective average list size after eliminating hypothesis that do not satisfy the duration const

imposed by the segmentation is 6.9. The result for the baseline HMM system using thes

N-best lists remains the same indicating that the improvements provided by the hybrid-syste

indeed because of better classifiers and not the smaller search space.

As a point of reference, we also produced results in Table 3 that used the refe

transcription to generate the segments. Using thisoracle segmentation (generated using th

reference transcription for Viterbi alignment), the best performance obtained on this task

7.0% WER. This is a 36% relative improvement in performance over the best configuration o

hybrid system using hypothesis-based segmentations. The effective average list size
IEEE TRANS. SIGNAL PROCESSING REVISION 3.0 MARCH 18, 2004
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eliminating hypotheses that do not satisfy the duration constraints imposed by theoracle

segmentation was 6.7. This experiment shows that SVMs efficiently lock on to g

segmentations. However, when we let SVMs choose the best segmentation and hypo

combination by using the N-best segmentations, the performance gets worse (11.8% W

shown in Table 4). This apparent anomaly suggests the need to incorporate variatio

segmentation into the classifier estimation process. Relaxing this strong interdependence b

the segmentation and the SVM performance is a point for further research.

4.3. Conversational Speech

The Switchboard (SWB) [27] task, which is based on two-way telephone recording

conversational speech, is very different from the AD task in terms of acoustic confusibility

classifier complexity. The baseline HMM system for this task performs at 41.6% WER.

followed a similar SVM training process to that which was described for the AD task.

estimated 43 classifiers for SWB. Since a standard cross-validation set does not exist for th

we used 90,000 utterances from 60 hours of training data. The cross-validation set consis

24,000 utterances. We limited the number of positive examples for any classifier to 30,000.

positive examples were chosen at random.

A summary of our SWB results are shown in Table 4. In the first experiment we us

segmentation derived from the baseline HMM system’s top hypothesis to rescore the N-be

This hybrid setup does improve performance over the baseline, albeit only marginally — 4

compared to a baseline of 41.6%. The second experiment was performed by usi

segmentations to rescore each of the utterances in the N-best lists. From the experimental

on the AD task we expected the performance with this setup to be worse than 40.6%

performance of the system did indeed get worse — 42.1% WER. When HMM models were
IEEE TRANS. SIGNAL PROCESSING REVISION 3.0 MARCH 18, 2004
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instead of SVMs with the same setup, the HMM system achieved a WER of 42.3% compa

the baseline of 41.6%. From this result we deduce that the lack of any language mod

information when we reorder the N-best lists is the reason for this degradation in performan

The next experiment was anoracleexperiment. Use of the reference segmentation to resc

the N-best list gave a WER of 36.1%, confirming our hypothesis that the segmentation issue

further exploration. A second set oforacleexperiments evaluated the richness of N-best lists. T

N-best list error rate was artificially reduced to 0% by adding the reference to the original 10

lists. Rescoring these new N-best lists using the corresponding segmentations result in erro

of 38.1% and 9.1% WER on SWB and AD respectively. The HMM system under a sim

condition improves performance to 38.6%. On AD the HMM system does not impr

performance over the baseline even when the reference (or correct) transcription is added

N-best list. This result suggests that SVMs are very sensitive to segmentations and can p

well if accurate segmentations are available.

Another set of experiments were run to quantify the absolute ceiling in performa

improvements the SVM hybrid system can provide. This ceiling can be achieved when we u

hybrid system to rescore the N-best lists that include the reference transcription an

reference-based segmentation. Using this setup the system gives a WER of 5.8% on SW

3.3% on AD. This huge improvement should not be mistaken to be a real improveme

performance for two reasons. First, we cannot guarantee that the reference segmenta

available at all times. Second, generating N-best lists with 0% WER is extremely difficult, if

impossible for conversational speech. This improvement should rather be viewed as an ind

of the fact that by using good segmentations to rescore good N-best lists, the SVM/HMM h

system has a potential to improve performance. Also, using matched training and
IEEE TRANS. SIGNAL PROCESSING REVISION 3.0 MARCH 18, 2004
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segmentations seems to improve performance dramatically.

Table 4 summarizes the important results in terms of the various segmentations and N

lists that were processed to arrive at the final hypothesis. The key point to be noted here

experiments 2 and 4 are designed such that both the hybrid system and the HMM syste

operating under the same conditions and offer a fair comparison of the two systems. For

experiments, since we reorder N-best lists by using segmentations corresponding to each

hypothesis in the list, both systems have the opportunity to evaluate the same segments.

other hand if we were to run the experiments using a single segmentation (experiment

example), the HMM system cannot use the segmentation information while the hybrid sy

can. Experiments 2 and 4 are key in order to compare both systems from a common po

reference. Experiment 4 suggests that when the HMM and hybrid system process

segmentations and rich N-best lists, the hybrid system outperforms the HMM syste

significantly in the case of AD and marginally on SWB.

5. CONCLUSIONS

This paper addresses the use of a support vector machine as a classifier in a continuous

recognition system. The technology has been successfully applied to two speech recog

tasks. A hybrid SVM/HMM system has been developed which uses SVMs to post-process

generated by a conventional HMM system. The results obtained in the experiments c

indicate the classification power of SVMs and affirm the use of SVMs for acoustic modeling.

oracle experiments reported here clearly show the potential of this hybrid system w

highlighting the need for further research into the segmentation issue.

Our ongoing research into new acoustic modeling techniques for speech recognition is

two directions. First, it is clear that for a formalism such as SVMs, there is a need for an iter
IEEE TRANS. SIGNAL PROCESSING REVISION 3.0 MARCH 18, 2004
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SVM classifier estimation process embedded within the learning loop of the HMM syste

expose the classifier to the same type of ambiguity observed during recognition. This sho

done in a way similar to the implicit integration of optimal segmentation and MCE/MMI-ba

discriminative training of HMMs [4,5]. Mismatched training and evaluation conditions

dangerous for recognition experiments. Second, the basic SVM formalism suffers from

fundamental problems: scalability, sparsity, and Bayesian-ness. Recent related resear

based on relevance vector machines (RVM) directly addresses the last two issues.

Finally, the algorithms, software, and recognition systems described in this work are ava

in the public domain as part of our speech recognition toolkit (seehttp://www.isip.msstate.edu

projects/speech/software).
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Figure 1. An example of a two-class problem where a maximum likelihood-derived decision surface is not

optimal (adapted from [4]). In the exploded view, the shaded region indicates the error induced by modeling

the separable data by Gaussians estimated using maximum likelihood. This case is common for data, such

as speech, where there is overlap in the feature space or where class boundaries are adjacent.
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Figure 2. Difference between empirical risk minimization and structural risk minimization for a simple

example involving a hyperplane classifier. Each hyperplane ( , and ) achieves perfect

classification and, hence, zero empirical risk. However, is the optimal hyperplane because it maximizes

the margin — the distance between the hyperplanes and . Maximizing the margin indirectly results

in better generalization.
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Figure 3. A sigmoid fit to the SVM distance-based posterior probability estimate.
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Figure 4. Composition of the segment level feature vector assuming a 3-4-3 proportion for the three

sections.
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Figure 5. An overview of a hybrid HMM/SVM system based on an N-best list rescoring paradigm.
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IEE

gamma
(C=10)

classification error
%

C
(gamma=0.5)

classification error
%

0.2 45 1 58

0.3 40 2 43

0.4 35 3 43

0.5 36 4 43

0.6 35 5 39

0.7 35 8 37

0.8 36 10 37

0.9 36 20 36

1.0 37 50 36

100 36
Table 1. Effect of the kernel parameters on the classification performance of RBF kernel-based

SVMs on the Deterding vowel classification task.
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IEEE TRANS. 

Approach Error Rate

K-Nearest Neighbor 44%

Gaussian Node Network 44%

SVM: Polynomial Kernels 49%

SVM: RBF Kernels 35%

Separable Mixture Models 30%

RVM: RBF Kernels 30%
Table 2. The SVM classifier using an RBF kernel provides significantly better

performance than most other comparable classifiers on the Deterding vowel

classification task.
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IEEE TR

RBF
gamma

WER (%)
hypothesis

Segmentation

WER (%)
Reference

Segmentation

polynomial
order

WER (%)
hypothesis

Segmentation

WER (%)
Reference

Segmentation

0.1 13.2 9.2 3 11.6 7.7

0.4 11.1 7.2 4 11.4 7.6

0.5 11.1 7.1 5 11.5 7.5

0.6 11.1 7.0 6 11.5 7.5

0.7 11.0 7.0 7 11.9 7.8

1.0 11.0 7.0

5.0 12.7 8.1
Table 3. Comparison of word error rates on the Alphadigits task as a function of the RBF kernel

width (gamma) and the polynomial kernel order. Results are shown for a 3-4-3 segment proportion

with the error penalty, C, set to 50. The WER for the baseline HMM system is 11.9%.
ANS. SIGNAL PROCESSING REVISION 3.0 MARCH 18, 2004
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* For the baseline HMM system, recognition is performed by rescoring a word-lattice created from the
N-best list.

** For the baseline HMM system, experiments were not performed due to the lack of a time-aligned
decoding mechanism.

Exp.
Information Source HMM Hybrid

Transcription Segmentation AD SWB AD SWB

1 N-best Hypothesis* 11.9 41.6 11.0 40.6

2 N-best N-best 11.9 42.3 11.8 42.1

3 N-best + Ref. Reference** — — 3.3 5.8

4 N-best + Ref. N-best + Ref. 11.9 38.6 9.1 38.1
Table 4. Experimental results comparing the baseline HMM system to a new hybrid SVM/HMM system.

The hybrid system marginally outperforms the HMM system when used as a post-processor to the output

of the HMM system where the segmentation is derived using the hypothesis of the HMM system. However,

when the reference transcription is included, or when the reference based segmentation is used, SVMs

offer a significant improvement in performance.
IEEE TRANS. SIGNAL PROCESSING REVISION 3.0 MARCH 18, 2004
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