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Applications of Support Vector Machines to Speech
Recognition
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Joseph Picone, Senior Member, IEEE

Abstract—Recent work in machine learning has focused on
models, such as the support vector machine (SVM), that auto-
matically control generalization and parameterization as part
of the overall optimization process. In this paper, we show that
SVMs provide a significant improvement in performance on a
static pattern classification task based on the Deterding vowel
data. We also describe an application of SVMs to large vocabulary
speech recognition and demonstrate an improvement in error
rate on a continuous alphadigit task (OGI Alphadigits) and a
large vocabulary conversational speech task (Switchboard). Issues
related to the development and optimization of an SVM/HMM
hybrid system are discussed.

Index Terms—Machine learning, speech recognition, statistical
modeling, support vector machines.

I. INTRODUCTION

SPEECH recognition systems have become one of the pre-
mier applications for machine learning and pattern recogni-

tion technology. Modern speech recognition systems, including
those described in this paper, use a statistical approach [1] based
on Bayes’ rule. The acoustic modeling components of a speech
recognizer are based on hidden Markov models (HMMs) [1],
[2]. The power of an HMM representation lies in its ability
to model the temporal evolution of a signal via an underlying
Markov process. The ability of an HMM to statistically model
the acoustic and temporal variability in speech has been integral
to its success. The probability distribution associated with each
state in an HMM models the variability that occurs in speech
across speakers or phonetic context. This distribution is typi-
cally a Gaussian mixture model (GMM) since a GMM provides
a sufficiently general parsimonious parametric model as well as
an efficient and robust mathematical framework for estimation
and analysis.

Widespread use of HMMs for modeling speech can be at-
tributed to the availability of efficient parameter estimation pro-
cedures [1], [2] that involve maximizing the likelihood (ML) of
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the data given the model. One of the most compelling reasons
for the success of ML and HMMs has been the existence of it-
erative methods to estimate the parameters that guarantee con-
vergence. The expectation–maximization (EM) algorithm pro-
vides an iterative framework for ML estimation with good con-
vergence properties, although it does not guarantee finding the
global maximum [3].

There are, however, problems with an ML formulation for
applications such as speech recognition. A simple example,
which is shown in Fig. 1, illustrates this problem. The two
classes shown are derived from completely separable uniform
distributions. ML is used to fit Gaussians to these classes, and
Bayes’ rule is used to classify the data. We see that the decision
threshold occurs inside the range of class 2. This results in a
significant probability of error. If we were to simply recognize
that the range of data points in class 1 is less than 3.3 and that
no data point in class 2 occurs within this range, we can achieve
perfect classification.

In this example, ML training of a Gaussian model will never
achieve perfect classification. Learning decision regions dis-
criminatively will improve classification performance. The im-
portant point here is not that Gaussian models are necessarily an
incorrect choice, but rather that discriminative approaches are a
key ingredient for creating robust and more accurate models.
Many promising techniques [4], [5] have been introduced for
using discriminative techniques to improve the estimation of
HMM parameters.

Artificial neural networks (ANNs) represent an interesting
and important class of discriminative techniques that have been
successfully applied to speech recognition [6]–[8]. Although
ANNs attempt to overcome many of the problems previously
described, their shortcomings with respect to applications such
as speech recognition are well documented [9], [10]. Some of
the most notable deficiencies include design of optimal model
topologies, slow convergence during training, and a tendency to
overfit the data. However, it is important to note that many of
the fundamental ideas presented in this paper (e.g., soft margin
classifiers) have similar implementations within an ANN frame-
work. In most classifiers, controlling a tradeoff between overfit-
ting and good classification performance is vital to the success
of the approach.

In this paper, we describe the application of one particular
discriminative approach—support vector machines (SVMs)
[11]—to speech recognition. We review the SVM approach
in Section II, discuss applications to speech recognition in
Section III, and present experimental results in Section IV.

1053-587X/04$20.00 © 2004 IEEE
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Fig. 1. Example of a two-class problem where a maximum likelihood-derived
decision surface is not optimal (adapted from [4]). In the exploded view, the
shaded region indicates the error induced by modeling the separable data by
Gaussians estimated using maximum likelihood. This case is common for
data, such as speech, where there is overlap in the feature space or where class
boundaries are adjacent.

More comprehensive treatments of fundamental topics such as
risk minimization and speech recognition applications can be
found in [11]–[20].

II. SUPPORT VECTOR CLASSIFIERS

An SVM [11] is one example of a classifier that estimates
decision surfaces directly rather than modeling a probability
distribution across the training data. SVMs have demonstrated
good performance on several classic pattern recognition prob-
lems [13]. Fig. 2 shows a typical two-class problem in which the
examples are perfectly separable using a linear decision region.
H1 and H2 define two hyperplanes. The distance separating
these hyperplanes is called the margin. The closest in-class and
out-of-class examples lying on these two hyperplanes are called
the support vectors.

Empirical risk minimization (ERM) [11] can be used to find
a good hyperplane, although this does not guarantee a unique
solution. Adding an additional requirement that the optimal hy-
perplane should have good generalization properties can help
choose the best hyperplane. The structural risk minimization
(SRM) principle imposes structure on the optimization process
by ordering the hyperplanes based on the margin. The optimal
hyperplane is the one that maximizes the margin while mini-
mizing the empirical risk. This indirectly guarantees better gen-
eralization [11]. Fig. 2 illustrates the differences between using
ERM and SRM.

An SVM classifier is defined in terms of the training exam-
ples. However, all training examples do not contribute to the
definition of the classifier. In practice, the proportion of support
vectors is small, making the classifier sparse. The data set itself
defines how complex the classifier needs to be. This is in stark
contrast to systems such as neural networks and HMMs, where
the complexity of the system is typically predefined or chosen
through a cross-validation process.

Real-world classification problems typically involve data that
can only be separated using a nonlinear decision surface. Op-

Fig. 2. Difference between empirical risk minimization and structural risk
minimization for a simple example involving a hyperplane classifier. Each
hyperplane achieves perfect classification and, hence, zero empirical risk.
However, C0 is the optimal hyperplane because it maximizes the margin—the
distance between the hyperplanes H1 and H2. Maximizing the margin indirectly
results in better generalization.

timization on the input data in this case involves the use of a
kernel-based transformation [11]:

(1)

Kernels allow a dot product to be computed in a higher di-
mensional space without explicitly mapping the data into these
spaces. A kernel-based decision function has the form

(2)

Two commonly used kernels explored in this study are

polynomial (3)

radial basis (4)

Radial basis function (RBF) kernels are extremely popular, al-
though data-dependent kernels [21] have recently emerged as a
powerful alternative. Although convergence for RBF kernels is
typically slower than for polynomial kernels, RBF kernels often
deliver better performance [11]. Since there are dot prod-
ucts involved in the definition of the classifier, where is the
number of support vectors, the classification task scales linearly
with the number of support vectors.

Nonseparable data is typically addressed by the use of soft
margin classifiers. Slack variables [11] are introduced to relax
the separation constraints:

for (5)

for and (6)

(7)

where are the class assignments, represents the weight
vector defining the classifier, is a bias term, and the ’s are
the slack variables. Derivation of an optimal classifier for this
nonseparable case exists and is described in detail in [11] and
[12].

picone
Note
Should not be a new paragraph.

picone
Note
Should right-justify "polynomial".
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III. APPLICATIONS TO SPEECH RECOGNITION

Hybrid approaches for speech recognition [6] provide a flex-
ible paradigm to evaluate new acoustic modeling techniques.
These systems do not entirely eliminate the HMM framework
because classification models such as SVMs cannot model the
temporal structure of speech effectively. Most contemporary
connectionist systems use neural networks only to estimate
posterior probabilities and use the HMM structure to model
temporal evolution [6], [10]. In integrating SVMs into such a
hybrid system, several issues arise.

Posterior Estimation: One drawback of an SVM is that it
provides an -ary decision. Most signal processing applica-
tions, however, need a posterior probability that captures our
uncertainty in classification. This issue is particularly impor-
tant in speech recognition because there is significant overlap in
the feature space. SVMs provide a distance or discriminant that
can be used to compare classifiers. This is unlike connectionist
systems, whose output activations are estimates of the posterior
class probabilities [6], [7].

One of the main concerns in using SVMs for speech recogni-
tion is the lack of a clear relationship between distance from the
margin and the posterior class probability. A variety of options
for converting the posterior to a probability were analyzed in
[18], including Gaussian fits and histogram approaches. These
methods are not Bayesian in nature in that they do not account
for the variability in the estimates of the SVM parameters. Ig-
noring this variability in the estimates often results in overly
confident predictions by the classifiers on the test set [22].

Kwok [14] and Platt [15] have extensively studied the use
of moderated SVM outputs as estimates of the posterior proba-
bility. Kwok’s work also discusses the relationship between the
SVM output and the evidence framework. We chose unmod-
erated probability estimates based on ML fitting as a tradeoff
between computational complexity and error performance. We
used a sigmoid distribution to map the output distances to pos-
teriors:

(8)

As suggested by Platt, the parameters A and B can be estimated
using a model-trust minimization algorithm [23]. An example
of the fit for a typical classifier is shown in Fig. 3.

Note that we have assumed that the prior class probabilities
are equal. An issue that arises from this formulation of esti-
mating posteriors is that the distance estimates are heavily bi-
ased by the training data. In order to avoid biased estimates, a
cross-validation set must be used to estimate the parameters of
the sigmoid [15]. The size of this data set can be determined
based on the amount of training data that is available for the
classifier.

Classifier Design: A fundamental issue in classifier design
is whether the classifiers should be one-versus-one classifiers,
which learn to discriminate one class from another class, or
one-versus-all, which learn to discriminate one class from all
other classes. One-versus-one classifiers are typically smaller
and less complex and can be estimated using fewer resources
than one-versus-all classifiers. When the number of classes is

Fig. 3. Sigmoid fit to the SVM distance-based posterior.

, we need to estimate one-versus-one classifiers
as compared to one-versus-all classifiers. On several standard
classification tasks, it has been proven that one-versus-one clas-
sifiers are marginally more accurate than one-versus-all clas-
sifiers [16], [17]. Nevertheless, for computational efficiency,
we chose to use one-versus-all classifiers in all experiments re-
ported here.

Segmental Modeling: A logical step in building a hybrid
system would be to replace the Bayes classifier in a traditional
HMM system with an SVM classifier at the frame level. How-
ever, the amount of training data and the confusion inherent in
frame-level acoustic feature vectors prevents this at the current
time. Although very efficient optimizers are used to train an
SVM, it is still not computationally feasible to train on all data
available in the large corpora used in this study. In our work, we
have chosen to use a segment-based approach to avoid these is-
sues. This allows every classifier to use all positive examples in
the corpora and an equal number of randomly selected negative
examples.

The other motivating factor for most segment-based ap-
proaches [24] is that the acoustic model needs to capture both
the temporal and spectral structure of speech that is clearly
missing in frame-level classification schemes. Segmental
approaches also overcome the assumption of conditional inde-
pendence between frames of data in traditional HMM systems.
Segmental data takes better advantage of the correlation in
adjacent frames of speech data.

A related problem is the variable length or duration problem.
Segment durations are correlated with the word choice and
speaking rate but are difficult to exploit in an SVM-type
framework. A simple but effective approach motivated by
the three-state HMMs used in most state-of-the-art speech
recognition systems is to assume that the segments (phones in
most cases) are composed of a fixed number of sections [10],
[24]. The first and third sections model the transition into and
out of the segment, whereas the second section models the
stable portion of the segment. We use segments composed of
three sections in all recognition experiments reported in this
work. The segment vector is then augmented with the logarithm
of the duration of the phone instance to explicitly model the
variability in duration.
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Fig. 4 demonstrates the construction of a composite vector
for a phone segment. SVM classifiers in our hybrid system op-
erate on such composite vectors. The composite segment feature
vectors are based on the alignments from a baseline three-state
Gaussian-mixture HMM system. The length of the composite
vector is dependent on the number of sections in each segment
and the dimensionality of the frame-level feature vectors. For
example, with a 39-dimensional feature vector at the frame level
and three sections per segment, the composite vector has a di-
mensionality of 117. SVM classifiers are trained on these com-
posite vectors, and recognition is also performed using these
segment-level composite vectors.

-best List Rescoring: As a first step toward building a
standalone hybrid SVM/HMM system for continuous speech
recognition, we have explored a simple -best list rescoring
paradigm. Assuming that we have already trained the SVM
classifiers for each phone in the model inventory, we generate

-best lists using a conventional HMM system. A model-level
alignment for each hypothesis in the -best list is then gen-
erated using the HMM system. Segment-level feature vectors
are generated from these alignments. These segments are then
classified using the SVMs. Posterior probabilities are computed
using the sigmoid approximation previously discussed, which
are then used to compute the utterance likelihood of each
hypothesis in the -best list. The -best list is reordered based
on the likelihood, and the top hypothesis is used to calibrate
the performance of the system. An overview of the resulting
hybrid system is shown in Fig. 5.

The above framework allows the SVM to rescore each
-best entry against the corresponding segmentation derived

by a Viterbi alignment. It is also instructive to fix the segmen-
tation so that each -best entry is rescored against a single,
common, segment-level feature stream. One approach to
accomplishing this, which represents our second segmentation
method, is to define a single feature stream by Viterbi-aligning
the one-best hypothesis generated by the baseline HMM
system. A third segmentation approach uses a feature stream
derived from the reference transcription to investigate the lower
error bound when a perfect segmentation is available. These
three segmentation methods are explored in the experiments
below.

IV. EXPERIMENTAL RESULTS

We evaluated our SVM approach on three popular tasks: De-
terding vowel classification [25], OGI Alphadigits [26], and
Switchboard [27]. In these experiments, we compared the per-
formance of the SVM approach to a baseline HMM system that
was used to generate segmentations. In this section, we also
present a detailed discussion of the classifier design in terms
of data distribution and parameter selection.

A. Static Pattern Classification

The Deterding vowel data [25] is a relatively simple but pop-
ular static classification task used to benchmark nonlinear clas-
sifiers. In this evaluation, the speech data was collected at a
10-kHz sampling rate and lowpass filtered at 4.7 kHz. The signal

Fig. 4. Overview of a hybrid HMM/SVM system based on an N -best list
rescoring paradigm.

Fig. 5. Composition of the segment level feature vector assuming a 3-4-3
proportion for the three sections.

was then transformed to 10 log-area parameters. A window du-
ration of 50 ms was used to generate the features. The training
set consisted of 528 frames from eight speakers, and the test set
consisted of 462 frames from a different set of seven speakers.
The speech data consisted of 11 vowels uttered by each speaker
in an context.

A traditional method for estimating an RBF classifier in-
volves finding the RBF cluster centers for each class separately
using a clustering mechanism such as K-MEANS [28]. We esti-
mate weights corresponding to each cluster center to complete
the definition of the classifier. The goal of the optimization
process is typically not improved discrimination but better
representation. The training process requires using heuristics
to determine the number of cluster centers. In contrast, the
SVM approach for estimating RBF classifiers is more elegant,
where the number of centers (support vectors in this case)
and their weights are learned automatically in a discriminative
framework.

The parameters of interest in tuning an RBF kernel are ,
which is the variance of the kernel, and C, which is the parameter
used to penalize training errors during SVM estimation [11],
[18]. Table I shows the performance of SVMs using RBF ker-
nels for a wide range of parameter values. The results clearly
indicate that the performance of the classifiers is very closely
tied to the parameter setting, although there exists a pretty wide
range of values for which performance is comparable. Another
interesting observation is the effect of C on the performance.

picone
Note
The captions for Figures 4 and 5 are reversed.

picone
Note
The captions for Figures 4 and 5 are reversed.
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TABLE I
EFFECT OF THE KERNEL PARAMETERS ON THE CLASSIFICATION PERFORMANCE OF RBF KERNEL-BASED SVMS ON THE DETERDING VOWEL CLASSIFICATION TASK

Note that for values of C greater than 20, the performance does
not change. This suggests that a penalty of 20 has already ac-
counted for all overlapped data, and a larger value of C will have
no additional benefit.

Table II presents results comparing two types of SVM ker-
nels to a variety of other classification schemes. A detailed de-
scription of the conditions for this experiment are described in
[18]. Performance using the RBF kernel was better than most
nonlinear classification schemes. The best performance we re-
port is 35%. This is worse than the best performance reported
on this data set (30% using a speaker adaptation scheme called
separable mixture models [29]) but significantly better than the
best neural network classifiers (e.g., Gaussian Node Network)
[8]. We have observed similar trends on a variety of static clas-
sification tasks [30] and recent publications on applications of
SVMs to other speech problems [31] report similar findings.

B. Spoken Letters and Numbers

We next evaluated this approach on a small vocabulary con-
tinuous speech recognition task: OGI Alphadigits (AD) [26].
This database consists of spoken letters and numbers recorded
over long distance telephone lines. These words are extremely
confusable for telephone-quality speech (e.g., “p” versus “b”).
AD is an extremely challenging task from an acoustic modeling
standpoint since the language model (a “self-loop” in which
each letter or number can occur an arbitrary number of times
and can follow any other letter or number) provides no predic-
tive power.

A baseline HMM system described in [18] was used to gen-
erate segmented training data by Viterbi aligning the training
reference transcription to the acoustic data. The time marks de-
rived from this Viterbi alignment were used to extract the seg-
ments. Before extraction, each feature dimension was normal-
ized to the range to improve the convergence proper-
ties of the quadratic optimizers used as part of the SVM estima-
tion utilities in SVMLight [32]. For each phone instance in the
training transcription, a segment was extracted. This segment
was divided into three parts, as shown in Fig. 5. An additional

TABLE II
SVM CLASSIFIER USING AN RBF KERNEL PROVIDES SIGNIFICANTLY BETTER

PERFORMANCE THAN MOST OTHER COMPARABLE CLASSIFIERS ON THE

DETERDING VOWEL CLASSIFICATION TASK

parameter describing the log of the segment duration was added
to yield a composite vector of size 3 39 features 1 log dura-
tion 118 features. Once the training sets were generated for
all the classifiers, the SVMLight utilities were used to train each
of the 29 phone SVM models.

For each phone, an SVM model was trained to discrimi-
nate between this phone and all other phones (one-versus-all
models), generating a total of 29 models. In order to limit the
number of samples (especially the out-of-class data) that is
required by each classifier, a heuristic data selection process
was used that required the training set to consist of equal
amounts of within-class and out-of-class data. All within-class
data available for a phone is by default part of the training
set. The out-of-class data was randomly chosen such that
one half of the out-of-class data came from phones that were
phonetically similar to the phone of interest, and one half came
from all other phones [18].

Table III gives the performance of the hybrid SVM system as
a function of the kernel parameters. These results were gener-
ated with ten-best lists whose total list error (the error inherent
in the lists themselves) was 4.0%. The list error rate is the best
performance any system can achieve by postprocessing these

picone
Note
This should be a reference to Figure 4, not Figure 5.
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TABLE III
COMPARISON OF WORD ERROR RATES ON THE ALPHADIGITS TASK AS A FUNCTION OF THE RBF KERNEL WIDTH (GAMMA) AND THE POLYNOMIAL KERNEL ORDER.

RESULTS ARE SHOWN FOR A 3-4-3 SEGMENT PROPORTION WITH THE ERROR PENALTY, C, SET TO 50. THE WER FOR THE BASELINE HMM SYSTEM IS 11.9%

-best lists. Although we would ideally like this number to be
as close to zero as possible, the constraints placed by the lim-
itations of the knowledge sources used in the system (acoustic
models, language models etc.) force this number to be nonzero.
In addition, the size of the -best list was kept small to mini-
mize computational complexity.

The goal in SRM is to build a classifier that balances general-
ization with discrimination on the training set. Table III shows
how the RBF kernel parameter is used as a tuning parameter
to achieve this balance. As gamma increases, the variance of
the RBF kernel decreases. This, in turn, produces a narrower
support region in a high-dimensional space. This support re-
gion requires a larger number of support vectors and leads to
overfitting, as shown when gamma is set to 5.0. As gamma de-
creases, the number of support vectors decreases, which leads to
a smoother decision surface. Eventually, we reduce the number
of support vectors to a point where the decision region is overly
smooth (gamma 0.1), and performance degrades.

As with the vowel classification data, RBF kernel perfor-
mance was superior to the polynomial kernel. In addition, as
we observed in the vowel classification task, the generalization
performance was fairly flat for a wide range of kernel param-
eters. The segmentation derived from the one-best hypothesis
from the baseline HMM resulted in an 11.0% WER using an
RBF kernel. To provide an equivalent and fair comparison with
the HMM system we have rescored the ten-best lists with the
baseline HMM system. Using a single segmentation to rescore
the ten-best lists does force a few hypothesis in the lists to be-
come inactive because of the duration constraints. The effective
average list size after eliminating hypotheses that do not satisfy
the duration constraints imposed by the segmentation is 6.9. The
result for the baseline HMM system using these new -best lists
remains the same, indicating that the improvements provided by
the hybrid-system are indeed because of better classifiers and
not the smaller search space.

As a point of reference, we also produced results in Table III
that used the reference transcription to generate the segments.
Using this oracle segmentation (generated using the reference
transcription for Viterbi alignment), the best performance ob-
tained on this task was 7.0% WER. This is a 36% relative im-
provement in performance over the best configuration of the
hybrid system using hypothesis-based segmentations. The ef-

fective average list size after eliminating hypotheses that do not
satisfy the duration constraints imposed by the oracle segmen-
tation was 6.7. This experiment shows that SVMs efficiently
lock on to good segmentations. However, when we let SVMs
choose the best segmentation and hypothesis combination by
using the -best segmentations, the performance gets worse
(11.8% WER as shown in Table IV). This apparent anomaly
suggests the need to incorporate variations in segmentation into
the classifier estimation process. Relaxing this strong interde-
pendence between the segmentation and the SVM performance
is a point for further research.

C. Conversational Speech

The Switchboard (SWB) [27] task, which is based on
two-way telephone recordings of conversational speech, is very
different from the AD task in terms of acoustic confusability
and classifier complexity. The baseline HMM system for this
task performs at 41.6% WER. We followed a similar SVM
training process to that which was described for the AD
task. We estimated 43 classifiers for SWB. Since a standard
cross-validation set does not exist for this task, we used 90 000
utterances from 60 h of training data. The cross-validation
set consisted of 24 000 utterances. We limited the number of
positive examples for any classifier to 30 000. These positive
examples were chosen at random.

A summary of our SWB results are shown in Table IV. In
the first experiment, we used a segmentation derived from the
baseline HMM system’s top hypothesis to rescore the -best
list. This hybrid setup does improve performance over the base-
line, albeit only marginally—40.6% compared to a baseline of
41.6%. The second experiment was performed by using seg-
mentations to rescore each of the utterances in the -best lists.
From the experimental results on the AD task, we expected the
performance with this setup to be worse than 40.6%. The per-
formance of the system did indeed get worse—42.1% WER.
When HMM models were used instead of SVMs with the same
setup, the HMM system achieved a WER of 42.3% compared
with the baseline of 41.6%. From this result, we deduce that the
lack of any language modeling information when we reorder the

-best lists is the reason for this degradation in performance.
The next experiment was an oracle experiment. Use of the

reference segmentation to rescore the -best list gave a WER
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TABLE IV
EXPERIMENTAL RESULTS COMPARING THE BASELINE HMM SYSTEM TO A NEW HYBRID SVM/HMM SYSTEM. THE HYBRID SYSTEM MARGINALLY

OUTPERFORMS THE HMM SYSTEM WHEN USED AS A POSTPROCESSOR TO THE OUTPUT OF THE HMM SYSTEM WHERE THE SEGMENTATION IS DERIVED

USING THE HYPOTHESIS OF THE HMM SYSTEM. HOWEVER, WHEN THE REFERENCE TRANSCRIPTION IS INCLUDED, OR WHEN THE

REFERENCE-BASED SEGMENTATION IS USED, SVMS OFFER A SIGNIFICANT IMPROVEMENT

of 36.1%, confirming our hypothesis that the segmentation
issue needs further exploration. A second set of oracle exper-
iments evaluated the richness of -best lists. The -best list
error rate was artificially reduced to 0% by adding the reference
to the original ten-best lists. Rescoring these new -best lists
using the corresponding segmentations resulted in error rates
of 38.1% and 9.1% WER on SWB and AD, respectively. The
HMM system under a similar condition improves performance
to 38.6%. On AD, the HMM system does not improve perfor-
mance over the baseline, even when the reference (or correct)
transcription is added to the -best list. This result suggests
that SVMs are very sensitive to segmentations and can perform
well if accurate segmentations are available.

Another set of experiments were run to quantify the absolute
ceiling in performance improvements the SVM hybrid system
can provide. This ceiling can be achieved when we use the
hybrid system to rescore the -best lists that include the refer-
ence transcription and the reference-based segmentation. Using
this setup, the system gives a WER of 5.8% on SWB and 3.3%
on AD. This huge improvement should not be mistaken to be
a real improvement in performance for two reasons. First, we
cannot guarantee that the reference segmentation is available
at all times. Second, generating -best lists with 0% WER is
extremely difficult, if not impossible, for conversational speech.
This improvement should rather be viewed as an indication
of the fact that by using good segmentations to rescore good

-best lists, the SVM/HMM hybrid system has a potential to
improve performance. In addition, using matched training and
test segmentations seems to improve performance dramatically.

Table IV summarizes the important results in terms of the var-
ious segmentations and -best lists that were processed to ar-
rive at the final hypothesis. The key point to be noted here is
that experiments 2 and 4 are designed such that both the hybrid
system and the HMM system are operating under the same con-
ditions and offer a fair comparison of the two systems. For these
experiments, since we reorder -best lists by using segmenta-
tions corresponding to each of the hypothesis in the list, both
systems have the opportunity to evaluate the same segments. On

the other hand if we were to run the experiments using a single
segmentation (experiment 1 for example), the HMM system
cannot use the segmentation information, whereas the hybrid
system can. Experiments 2 and 4 are key in order to compare
both systems from a common point of reference. Experiment 4
suggests that when the HMM and hybrid system process good
segmentations and rich -best lists, the hybrid system outper-
forms the HMM system—significantly in the case of AD and
marginally on SWB.

V. CONCLUSIONS

This paper addresses the use of a support vector machine as a
classifier in a continuous speech recognition system. The tech-
nology has been successfully applied to two speech recogni-
tion tasks. A hybrid SVM/HMM system has been developed
that uses SVMs to postprocess data generated by a conven-
tional HMM system. The results obtained in the experiments
clearly indicate the classification power of SVMs and affirm
the use of SVMs for acoustic modeling. The oracle experiments
reported here clearly show the potential of this hybrid system
while highlighting the need for further research into the seg-
mentation issue.

Our ongoing research into new acoustic modeling techniques
for speech recognition is taking two directions. First, it is clear
that for a formalism such as SVMs, there is a need for an
iterative SVM classifier estimation process embedded within
the learning loop of the HMM system to expose the classifier
to the same type of ambiguity observed during recognition.
This should be done in a way similar to the implicit integration
of optimal segmentation and MCE/MMI-based discriminative
training of HMMs [4], [5]. Mismatched training and evaluation
conditions are dangerous for recognition experiments. Second,
the basic SVM formalism suffers from three fundamental prob-
lems: scalability, sparsity, and Bayesian-ness. Recent related
research [20] based on relevance vector machines (RVMs)
directly addresses the last two issues.
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Finally, the algorithms, software, and recognition systems de-
scribed in this work are available in the public domain as part of
our speech recognition toolkit (see http://www.isip.msstate.edu/
projects/speech/software).
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