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ABSTRACT

Most large vocabulary continuous speech recognition (LVCSR) systems in the past decade have

context-dependent phone as the fundamental acoustic unit. In this paper, we present one of the firs

LVCSR systems that uses a syllable-level acoustic unit for LVCSR on telephone-bandwidth speech

effort is motivated by the inherent limitations in phone-based approaches — namely the lack of an

and efficient way for modeling long-term temporal dependencies. A syllable unit spans a longer

frame, typically three phones, thereby offering a more parsimonious framework for mod

pronunciation variation in spontaneous speech.

We present encouraging results which show that a syllable-based system exceeds the performan

comparable triphone system both in terms of word error rate (WER) and complexity. The WER of the

syllable system reported here is 49.1% on a standard SWITCHBOARD evaluation, a small improv

over the triphone system. We also report results on a much smaller recognition task, OGI Alpha

which was used to validate some of the benefits syllables offer over triphones. The syllable-based

exceeds the performance of the triphone system by nearly 20%, an impressive accomplishment si

alphadigits application consists mostly of phone-level minimal pair distinctions.

EDICS: SA 1.6.2

CORRESPONDENCE: Aravind Ganapathiraju
Institute for Signal and Information Processing
Department of Electrical and Computer Engineering, PO Box 9571
Mississippi State University, Mississippi State, MS 39762
Phone: (601) 325-8335 Fax: (601) 325-3149
Email: ganapath@isip.msstate.edu

1. G. R. Doddington is now with the Information Technology Laboratory of the National Institute of
Standards and Technology.



SYLLABLE BASED LVCSR PAGE 1 OF 27

speech

ber of

unts of

ince a

cies is

e of

a larger

tion to

nd the

get”

e use

uced),

s as

tween

limited

s of the

tes the

ithout

of

kes the

in the
1. INTRODUCTION

For at least a decade the triphone has been the dominant method of modeling acoustics in

recognition. However, triphones are a relatively inefficient decompositional unit due to the large num

triphone patterns with a nonzero probability of occurrence, leading to systems that require vast amo

memory for model storage, and numerous models with poorly trained parameters. Moreover, s

triphone unit spans an extremely short time interval, integration of spectral and temporal dependen

not easy. For applications such as the SWITCHBOARD (SWB) Corpus [1], where performanc

phone-based approaches has stagnated over the past few years, we have shifted our focus to

acoustic context [2]. The syllable is one such acoustic unit whose appeal lies in its close connec

human speech perception and articulation, its integration of some coarticulation phenomena, a

potential for a relatively compact representation of conversational speech.

For example, consider the phrase “Did you get much back?” shown in Figure 1. This example1 has been

excised from a conversation in SWB. The first two words, “Did you,” are merged into the word “

resulting in a pronunciation “jh y uw g eh”. Previous approaches to model such behavior involved th

of context-dependent (CD) phones [3]. However, since phones are deleted (or often extremely red

what is needed is higher-level information predicting the deletion of the phone. Modeling word

sequences of phones, though logical, is not justified when we try to derive a one-to-one mapping be

the acoustics and the phone. Recent attempts at pronunciation modeling [4,5] have demonstrated

success at modeling such phenomena. For example, in SWB, as many as 80 different pronunciation

word “and” have been labelled [6]. The example in Figure 1, though an extreme case, demonstra

challenges for explicit phone-based pronunciation modeling in conversational speech.

A syllable, on the other hand, seems to be an intuitive unit for representation of speech sounds. W

much difficulty listeners identify the number of syllables in a word [6] and, with a high degree

agreement, even the syllable boundaries. It is our conjecture in this paper that such behavior ma

syllable a more stable acoustic unit for speech recognition. The stability and robustness of syllables

1. This example is available athttp://www.isip.msstate.edu/projects/switchboard/faq/data/example_023.
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English language is further supported by comparing the phone and syllable deletion rates in convers

speech. In the analysis of data from a transcription project on SWB [6,7], it was estimated that the de

rate for phones was 12%, compared to a deletion rate for syllables of less than1%. The example in F

supports this observation. This suggests that explicit pronunciation modeling becomes a necessary

of phone-based systems to accommodate the high phone deletion rate in conversational speech,

perhaps be circumvented by a syllable-based system.

The use of an acoustic unit with a longer duration facilitates exploitation of temporal and spe

variations [8] simultaneously. Parameter trajectories and multi-path HMMs [9] are examples of techn

that can exploit the longer acoustic context, and yet have had marginal impact on phone-based s

Recent research on stochastic segment modeling of phones [10] demonstrates that reco

performance can be improved by exploiting correlations in spectral and temporal structure. We belie

applying these ideas to a syllable-sized unit, which has a longer acoustic context, will result in sign

improvements in speech recognition performance while maintaining a manageable level of complex

In this paper, we describe a syllable-based system and compare its performance with word-intern

cross-word triphone systems on two publicly available databases: SWITCHBOARD (SWB) [11]

Alphadigits (AD) [12]. Note that these evaluations span the spectrum of telephone-based cont

speech recognition applications from spoken letters and digits to conversational speech. We fo

aspects of the syllable system which are significantly different from triphone systems, such as the

inventory and lexicon. We demonstrate some improvements that were achieved using monosyllabi

models and finite duration models.

2. BASELINE SYSTEMS

There are many ways to incorporate syllable information into a speech recognition system. Belo

describe several approaches that integrate syllable acoustic models with existing phone-based syst

also describe the phone-based systems used as baselines since performance on these de

applications depends significantly on the complexity of the technology used.
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2.1. DESIGN OF A SYLLABLE-BASED LEXICON

By definition, a syllable spans a longer period of time compared to a phonemic unit [13]. In English

can categorize different types of syllables using their consonant (C) and vowel (V) content. For exam

syllable labeled CVC consists of a sequence of a consonant, vowel and consonant. An example of

syllable is “_t_eh_n”, pronounced “ten.” Though other forms of syllables exist (for example, VVC

CCVVC), the CVC and CV syllables cover close to three-quarters of SWB [6]. The syllable is de

based on human perception and speech production phenomenon typically assisted by stress pattern

a word. For example, the word “atlas” intuitively appears to consist of two distinct segments. It is

segments that are called syllables. For ease of representation, syllables are typically represent

concatenation of the baseform phones comprising the segment (_ae_t l_ax_s). It does not howeve

that the acoustic segments always contain the phone sequence in its entirety.

Research conducted during the 1996 LVCSR Summer Workshop at the Center for Language and

Processing at Johns Hopkins University demonstrated that the use of syllable-level information and

markings can reduce word error rate in triphone-based systems [14]. A by-product of this work was

quality dictionary annotated with stress and syllable information. The annotated dictionary was deve

from a baseline dictionary of about 90,000 words. Stress markings were obtained from the P

dictionary [15]. Pronunciations were marked for primary stress and secondary stress. Syllabification

introduced automatically using software provided by NIST [16]. This software implements syllabifica

principles [13] based on permitted syllable-initial consonant clusters, syllable-final consonant cluste

prohibited onsets. In order to keep the number of pronunciations and syllable units manageable, on

syllabification per word was used.

One complication in using syllables is the existence of ambisyllabic consonants: consonants at s

boundaries that belong, in part, to both the preceding and the following syllable. Examples o

phenomenon, as they appear in the syllable lexicon described above, are:

ABLE ➔ _ey_b# _#b_ax_l

GRAMMAR ➔ _g_r_ae_m# _#m_er
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The “#” denotes ambisyllabicity and is used as a tag for the phone which is the most plausible bou

Though no clear syllable boundary exists, it makes sense to assume that the above examples consi

syllables each. The most commonly occurring variant for each word was chosen and theambisyllabic

markings were retained. Hence, some syllables appear in our syllabary multiple times, with the add

entries containing the ambisyllabic maker “#” (which can appear at the beginning or end of the sylla

For the systems discussed in this paper, stress was ignored for two reasons. First, our goal was to k

baseline system as simple as possible and to prevent an abundance of undertrained acoustic par

Second, the value of lexical stress information seemed questionable. Even though stress plays an im

prosodic role in English, the use of stress marks would increase the number of syllables by an o

magnitude and would induce a combinatorial explosion of parameters. Our syllabified lexicon for

consisted of about 70,000 word entries and required 9,023 syllables for complete coverage of the 60

training data [17]. As explained in Figure 2, 3% of the total number of syllables appearing in SWB, w

is approximately 275 syllables, cover over 80% of the syllable tokens in the training data. Of the 7

words represented in the lexicon, approximately 40% have at least one ambisyllabic representation

2.2. BASELINE TRIPHONE SYSTEM

All systems described in this paper are based on a standard LVCSR system developed from a comm

available package, HTK [18]. This system, though extremely powerful and flexible, did not sup

cross-word decoding for an application as large as SWB. Considering the exploratory nature of this

we decided not to use context dependency modeling in our syllable systems. Context dependent

models would introduce a few million models into the system, and this, in turn, would necessitate th

of clustering and/or state-tying. Many other features standard in state-of-the-art LVCSR systems [19

as speaker adaptation and vocal tract length normalization, were similarly excluded from our study

things provide well-calibrated improvements in recognition performance, yet add to the overall sy

complexity, complicate the system optimization process, and require a deeper understanding of a b

system’s performance before they can be successfully introduced. Therefore, our baseline syllable

is a word-internal context-independent system, while our baseline phone systems are word-in

context-dependent systems.

The phone-based system follows a fairly generic strategy for triphone training. The training proced
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essentially a four-stage process consisting of:

1. Flat-start monophone training: Generation of monophone seed models with nominal values, and

reestimation of these models using reference transcriptions.

2. Baum-Welch training of monophones: Adjustment of the silence model, reestimation of single-Gaussian

monophones using the standard Viterbi alignment process.

3. Triphone creation: Creation of triphone transcriptions from monophone transcriptions, initial triphone

training, triphone clustering, state tying, training of state-tied triphones.

4. Mixture generation: Split single Gaussian distributions into mixture distributions using an iterative

divide-by-two clustering algorithm; reestimation of triphone models with mixture distributions.

The first two stages of training produce a context-independent monophone system. This system u

monophones, a silence model and a word-level silence model (short pause). All phone models are

left-to-right HMMs without skip states, and use a single Gaussian observation distribution. Ten ho

data was used for the flat-start process. This data was chosen to span variability in the corpus.

silence model was created at this stage which had additional transitions intended to create a more

model capable of absorbing impulsive noises (common in the training data). In addition, a V

alignment of the monophone transcriptions was performed based on the fully-trained monophone m

The monophone models were reestimated using these Viterbi alignments.

A context-dependent (CD) phone system was then bootstrapped from the context-independe

system. The single-Gaussian monophone models generated from the CI system were clustered and

seed the triphone models. Four passes of Baum-Welch reestimation were used to reestimate the

model parameters. The number of Gaussians was, however, reduced by tying states [20]. Finally

models were increased to eight Gaussians per state using a standard divide-by-two clustering alg

The resulting system had 81,314 virtual triphones (i.e. all triphones possible using an invento

44 phones and the lexicon), 11,344 real triphones, 6,125 states and 8 Gaussian mixture compon

state.
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2.3. PRELIMINARY SYLLABLE SYSTEM

The preliminary syllable system consisted of 9,023 syllable models. A standard left-to-right m

topology with no skip states was used. The number of states in each model was set to one-half the

duration of the syllables measured using a 10 msec frame duration. The duration information fo

syllable was obtained from a Viterbi alignment based on a state-of-the-art triphone system. Sy

models were trained in a manner analogous to the baseline triphone system, excluding the tr

clustering stage (unnecessary for a context-independent system). The resulting models, similar

baseline phone system, had 8 Gaussian mixture components per state.

The models in this system, however, were poorly trained due to the nature of SWB. Of the 9,000 sy

appearing in the training database, over 8000 of these have fewer than 100 training tokens. From F

it is clear that a small portion of the syllabary is sufficient to cover nearly all of the databas

275 syllables cover 80% of the database. Hence, we chose to evaluate our approach using a

consisting of 800 syllables and replacing the remaining poorly trained syllables in the lexicon by

phonemic representation. An example is the word “access,” which is represented in this hybrid sys

“_ae_k s eh s.” The symbol “_ae_k” represents a syllable model, while “s” and “eh” represent its p

constituents. Approximately 10% of the entries in the lexicon have syllable-only representations.

Note that the phones used for recognition were not trained in the context of syllables, but were t

separately as CI phones using 32 Gaussian mixture components per state. All of these phone

which we refer to as “glue” phones, consisted of three state left-to-right models. This methodolo

combining syllables and phones is not entirely appropriate and is the subject of on-going research

is a combination of disparate model sets estimated in isolation. However, this approach repres

pragmatic solution to the problem of poorly trained acoustic models.

3. ENHANCED SYSTEMS

Though the use of syllables in conjunction with phones in lexical representations circumvente

problem of undertrained syllable models, model mismatch at phone-syllable junctions was s

significant problem. Below, we describe several modifications that were made to address this probl
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3.1. HYBRID SYLLABLE SYSTEM

We first approached the mismatch issue by building a system consisting of the 800 most frequent sy

and CI phones from scratch (rather than bootstrapping the models). Several important issues s

ambisyllabicity and resyllabification were ignored in this process. For example, if a syllable wit

ambisyllabic marker was to be replaced by its phone representation, we ignored the marker all togeth

example, “shading” became “sh ey d d_ih_ng.”

The number of states for each syllable model was proportional to its median duration, while the

models used standard three state left-to-right topologies with no skip states. The final mode

8 Gaussian mixture components per state. An evaluation of the system on the 2427 utterance

resulted in a 57.8% word error rate (WER). A analysis of the errors occurring in the above exper

revealed that a very high percentage of words with an all-phone lexical representation or a mixed sy

phone lexical representation were in error. Table 1 provides an analysis of the errors by word categ

This analysis motivated the development of a hybrid system using syllables and word-internal triph

Following the approach above, CI phones were replaced with the corresponding CD phones (for ex

“_ah_n k” became “_ah_n n-k”, and “p _t_ih_ng” became “p+t _t_ih_ng”). Syllable models from

baseline syllable system and triphone models from the baseline word-internal triphone system

combined and reestimated using 4 passes of Baum-Welch over the entire training database. Table

the performance of the hybrid system with CD phones.

3.2. MONOSYLLABIC WORD MODELING

One reason SWB is a difficult corpus for LVCSR is the variability in word pronunciations. Since

syllable is a longer acoustic unit compared to the phone, the need to explicitly provide pronunciatio

all variants can be alleviated. It is possible for the syllable model to automatically consume the aco

variation of the pronunciation of a word/syllable in the model parameters. A closer look at the training

in terms of its word content revealed some interesting facts. Table 3 shows the distribution of words

60+ hour training set. There were a total of 529 monosyllabic words in the training data. However,

529 monosyllabic words covered 75% of the total number of word tokens in the training set. The to
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monosyllabic words covered 71% of the total number of word tokens in the training set. Additionally,

of the recognition errors when using the hybrid syllable system were monosyllabic words. This sugg

the need to explicitly model monosyllabic words.

In the monosyllabic word system, monosyllabic words with multiple pronunciations were represent

one model that represented all pronunciations. Table 4 provides some examples of this modifi

Another example not mentioned in the table is the word “and.” In the lexicon its only pronunciatio

“_ae_n_d.” However, in conversational speech the possible common alternative pronunciations cou

deletions of “_ae,” “_d,” or both. Using the larger acoustic unit, it can be seen that the word model

dependent on the lexical realization, and variation in pronunciation can be modeled by the HMM stru

directly.

However, we decided to use separate models for words with different baseforms. Table 5 provides

examples of this modification. In spontaneous conversational speech, the monosyllabic word “no”

significant durational variation depending on its position in a sentence. It is unlikely that the monosy

word “know” has this same characteristic. The difference in the duration of these models is, on an av

80ms. This difference, therefore, necessitates two separate models for these homonyms with a d

number of states in each model. The word model “know” was constructed with 9 states and the

model “no” had 13 states. Another example of this type of monosyllabic word is “to,” which is more lik

to be pronounced as “_t_ax” rather than “_t_uw.” In this case the number of states in the word mode

is 4 compared to 10 states for the word “two,” and 11 states for the word “too.”

Yet another ramification of introducing monosyllabic word models is the relationship between

models that were previously represented as syllables. The 800 syllables in the baseline system

replaced by 200 word models + 632 syllables. Some of the syllables were only trained from monosy

word tokens while others have training tokens from both monosyllabic and polysyllabic words. How

when using word models, some of the original syllables would have insufficient training materi

reliably train both a word model and a syllable model. In other words, most of the occurrences of a

syllable were as a monosyllabic word. Separating the two occurrences resulted in a poorly trained s
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version of the model.

The 200 word models were seeded with the most frequent syllable representation for that word

number of states in the syllable and word models were reestimated by relabeling the forced align

with the 632 syllables and 200 word models. As before, the number of states for each model was o

the median duration. The seed models of this monosyllabic word system (200 word models + 632 sy

+ word internal triphones) that were obtained from the hybrid syllable system discussed in the pre

section were reestimated using 4 iterations of Baum-Welch reestimation on the 60+ hour training se

3.3. FINITE DURATION MODELING

As previously explained, a syllable is expected to be durationally more stable than a phone. Ho

when we examined the forced alignments using our hybrid syllable system, we noticed very long t

the duration histograms for many syllables. The duration histogram for the syllable “_ae_n_d” is sho

Figure 3. The peak at the 8th frame in Figure 3 is an artifact of the requirement that all instances of th

during forced alignment need to be at least 8 frames long (the number of states in the model) sin

models do not have skip states. We also observed a very high word deletion rate. The deletio

somewhat attributable to the long tails in the duration histograms of syllable models. These facts sug

a need for some additional durational constraints on our models.

To explore the importance of durational models, we decided to evaluate a finite duration [21] topolog

finite duration topology we chose is shown in Figure 4. A model was created by using the correspo

infinite duration model as a seed, and replicating each state in the finite duration model times, wh

is obtained from

, (1)

and is the number of frames that have been mapped to that state for a given syllable token. The n

of times the state is replicated is roughly proportional to the self-loop probability for the given s

Assuming a Gaussian distribution for the duration of a syllable, the above equation guarantees that

90% of the training tokens for the syllable can be explained by the estimated probability. The observ

P P

P E S[ ] 2 stddev S( )⋅+=

S
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of each replicated state are tied to the observations of the entry state so we maintain a manageable

of free variables for a model and so there are at least 100 instances of training data per parame

achieve a quick turnaround time we decided not to do a complete training of the models. Rather, w

four pass reestimation of the finite duration monosyllabic words and syllables from the monosyllabic

system described in the previous section.

4. EVALUATIONS

In this section, we demonstrate improved performance for our syllable system on two drastically dif

tasks involving speech collected from the public telephone network: the SWITCHBOARD (SW

Corpus [11] which consists of conversational speech and the OGI Alphadigit (AD) Corpus [12] w

consists of spoken letters and numbers.

4.1. SWITCHBOARD

The syllable system trained on SWB data was evaluated on the test set created for the 1997 L

Summer Workshop at Johns Hopkins University [17]. In the first full evaluation, we attempted to test

generic phone and syllable systems. The syllable system consisted of the 800 most frequently oc

syllables and 42 monophones. The results of these experiments are shown in Table 2. The syllable

performs exactly as we would expect, better than the context-independent monophone and worse t

context-dependent triphone system, at 56.4% WER.

An error analysis of the baseline syllable system reveals some interesting facts. Table 1 shows th

errors segregated by their representation in the test lexicon: words with an all-syllable represen

words with a mixed representation (syllable and phone) and words with an all-phonemic represen

The error rate in words with a mixed representation and an all-phone representation is rather high

suggests a mismatch in using phones and syllables together, where each is trained separately. Th

syllable system tries to address this problem by using 800 syllables and word-internal triphones to

These models were reestimated together to better model contextual effects. The hybrid system im

the performance significantly to 51.7% WER. Tables 1 and 3 also indicate the need for better mode

monosyllabic words, not just because of a high incidence of errors for these words but also becau
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cover over 80% of the database.

The monosyllabic word system consisted of 200 monosyllabic words, 632 syllables and word-in

triphones. This system, with an error rate of 49.3%, gave a reduction in error rate of 2.4% abs

compared to the hybrid syllable system. Using finite duration topology for this system reduced the

marginally by 0.2% to 49.1%. This result needs further investigation since durational analysis of f

alignments suggest that finite duration topology would have a considerable effect in reducing the de

rate. The deletions however reduced only marginally and the disparity between deletion and inserti

was not effected (13.3% deletions vs. 3.6% insertions).

4.2. ALPHADIGITS

To obtain a measure of the extensibility of our continuous speech recognition systems developed

SWB data, we also investigated performance on a smaller scale task: alphadigits. The reason t

appealing was that the alphadigit task was far removed from the task of large vocabulary conti

speech recognition. The corpus we chose comprised of short controlled segments of prompted sp

much different than the spontaneous, unpredictable SWB utterances. On this type of speech da

speech, one would expect minimal differences in the performance of the syllable and triphone syste

to less significant coarticulatory effects and pronunciation variations. Another reason we were dra

this task was its real-world applicability. Telephone alphadigit recognition has been of interest to Bell

and others since the 1970’s [22]. Many applications (security, automated telephone services, etc.) w

enhanced if a user’s spelled or spoken response could reliably take the place of the keypads wh

pervasive today. Evaluation on alphadigit data would also give us a measure of the portability o

syllable system where we could ascertain that syllables would give us a performance improv

irrespective of the domain of application.

A robust and reliable alphadigit system has long been a goal for speech recognition scientists. Most

work on both alphabet and alphadigit systems focuses on resolving the high rates of recognizer con

for certain word sets, particularly the E-set (B, C, D, E, G, P, T, V, Z, THREE) and A-set (A, J, K

EIGHT). The problems with these tasks occur mainly because the acoustic differences between the
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of the sets are minimal. For instance, the letters B and D differ primarily in the first 10-20 ms durin

consonant portion of the letter [23]. Many techniques have been used to deal with these minim

distinctions, such as an inclusion of weighting functions in dynamic time warping [24],

knowledge-based approaches [25]. In the 1980’s, HMM-based systems [26] were first applied to thi

Enhancements to these HMM-based systems have yielded the best performance to date, 8.3% W

alphabets [23]. Table 6 summarizes many important systems for alphadigit recognition developed o

years [23]. These results, however, are not a fair comparison because the evaluations were d

different databases and different feature extraction techniques.

The corpus we chose to use for alphadigit recognition was the OGI Alphadigit corpus [12]. This c

bears a large resemblance to the SWB Corpus in that the data collection conditions were similar: bot

collected digitally over T1 telephone lines. The corpus consists of approximately 3000 subjects, e

whom spoke some subset of 1102 phonetically-balanced prompting strings of letters and digit

experiments were performed on a training set of 51545 utterances from 2237 speakers and evalu

3329 utterances from 739 speakers [29]. Three systems were developed: cross-word triphones (CW

word-internal triphones (WI-TRI) and context-independent syllables (CI-SYL).

Table 7 summarizes the performance of the AD experiments described in this paper. The CI-SYL s

not only performs better than its triphone counterpart, WI-TRI, (by approximately 3% absolute), it

performs better than the CW-TRI system by a 2% absolute difference. It is also interesting to note the

error rates for both the alphabets and digits separately. The syllable system makes its greatest g

recognition of the alphabets whereas it lags in performance on the digit recognition.

Table 8 gives an analysis of the primary contributors to the error rate. It is somewhat curious to no

the syllable models perform better than the triphone models in E-set, A-set and S-F pair recognition

would expect the phones to do better on this portion of the task given their fine-grain phonetic contex

the other hand, the phone system performs better on nasals. The word SIX accounts for a large po

the errors on digits for the syllable system. If we analyze the errors in the syllable and triphone sy

without the word SIX, the syllable system’s performance exceeds that of the triphone sy
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5.3% vs. 5.7% WER. The syllable _s_ih_k_s that is used to model SIX, is a CVCC syllable. Owing t

low bandwidth telephone quality data being used, the consonants in this case are easily conf

Cross-word triphone models do a better job of modeling this context.

Not only do the syllable models achieve a lower word error rate, but they do so in a more efficient ma

Table 9 shows some complexity statistics for both triphone systems and our best syllable system.

table, the term “logical model” refers to a triphone model that is generated as a concatenation of e

models. In contrast, the term “physical model” refers to the a HMM that is estimated after a decisio

based context tying [18]. Note that there has been a considerable reduction in the number of mode

context-dependent cross-word triphones to the context-independent syllables. The number of tota

has been reduced considerably in the phone-based systems by way of state-tying. Though the

system contains more states than the word-internal triphones, the search space for the syllable sy

significantly smaller. Both these factors result in a recognition speedup by a factor ofsevenover the

triphone system.

5. CONCLUSIONS

We have presented a series of recognition experiments on data comprising two vastly different sp

styles (spontaneous telephone speech and read telephone alphadigits) using a syllable-based

model. Our results are summarized in Table 10. Results indicate that syllables are a promising u

recognition in LVCSR. The major innovation of our syllable system is the smooth integration of a

inventory of syllable models and a mixture of acoustic models ranging from monosyllabic word

context-dependent phones. The syllable-based system with monosyllabic word models gives an a

1% reduction in WER on a standard SWB evaluation set as compared to a similar word-internal tri

system. The best WER achieved on SWB was 49.1%. Additionally, the complexity of the syllable-b

system is lower than the comparable triphone system when state-tying and clustering are not em

Evaluations on the OGI Alphadigit data confirmed the gain we achieve by using syllables as a replac

for triphone units. The syllable-based alphadigit system achieved a performance of 10.4% WE

absolute 2.9% decrease in WER compared to a cross-word triphone system.
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Our work also shows the need for better modeling of monosyllabic words, which form a large porti

the SWB database. A performance improvement (a 2.4% absolute reduction in WER) with monosy

word models and syllables was achieved. This gain can be attributed to the combination of m

pronunciations in monosyllabic words into one acoustic model and separation of different monosy

words with the same baseform (e.g. _n_ow: “know,” “no”). If this effect scales well with ot

improvements, we believe that the syllable alleviates the need for explicit pronunciation modeli

SWB [14] (current approaches to pronunciation modeling are very compute intensive).

The system presented here is clearly deficient in a number of areas, including the representa

ambisyllabics in the lexicon, and the integration of syllable and phone models in a mixed-word entr

do believe, however, that the current system provides the proper framework to simultaneously expl

temporal and spectral characteristics of the syllable by clustering or trajectory modeling. Prelim

results in this direction are promising.

In a recently performed experiment, word models were used in conjunction with triphones and resu

only a marginal improvement in performance. This seems to indicate that mixing models of signific

different contexts and lengths may not be very useful. This could also explain the minimal gain we

SWB experiments as compared to Alphadigit data where the system was purely syllable-centric. A

important area of interest is the introduction of context-dependent syllables in a constrained way to

the number of free variables in the system manageable. We believe that additional syllable models

introduced without a significant increase in the overall system complexity by using state-tying

clustering.
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DID YOU GET MUCH BACK
Figure 1. An example of phone deletion in the phrase “Did you get much back?” excised from a
Switchboard conversation. “Did” is reduced and merged into “you get” such that the resulting word
is pronounced “jyuge.”
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Figure 2. A cumulative histogram of the syllable tokens appearing in SWB transcriptions.
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Figure 3. Duration histogram for the syllable “_ae_n_d.”
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Lexical Representation Total words Words in error Word Error Rate

Words with syllables only 15732 7321 47%

Monosyllabic words 13585 6504 48%

Words with syllables + phones 1186 663 56%

Words with phones only 1226 830 68%
Table 1:  Error analysis of the hybrid syllable + monophone system.
System Word Error Rate

Context-Independent monophones 62.3%

Word-internal triphones 49.8%

800 Syllables and 42 monophones 56.4%

800 Syllables and word-internal triphones 51.7%

632 Syllables, 200 monosyllabic words and word-internal triphones 49.3%

Finite duration monosyllabic words and syllables and word-internal
triphones

49.1%
Table 2:  Summary of system performance with CD phones.
Category Count/Percentage

Unique Words 15,127

Number of Word Tokens 659,713

Number of Monosyllabic Words (dependent on lexicon/alignments) 529

Monosyllabic word tokens covered by the top 200 Monosyllabic words 95%

Word tokens covered by the 529 Monosyllabic words 75%

Word tokens covered by the top 200 Monosyllabic words 71%
Table 3:  Analysis of the frequency of words appearing in the training data.
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Word Model Pronunciation Variants

THE _dh_ah _dh_iy _dh_ax

FOR _f_er _f_ow_r

TO _t_ax _t_uw
Table 4:  Examples of a monosyllabic word model representing all pronunciation variants.
Words Word Models

KNOW, NO __know, __no

THERE, THEIR __there, __their

TO, TOO __to, __too
Table 5:  Monosyllabic words for which separate word models were used for each baseform.
Researchers Year Bandwidth
Speaker

Dependent
Speaker

Independent

Rabiner, et al. [24] 1979 3.2 kHz --- 21.0

Rabiner and Wilpon [26] 1981 3.2 kHz 11.5 15.4

Rabiner and Wilpon [22] 1987 3.2 kHz 10.5 ---

Euler et al. [27] 1990 3.2 kHz 7.0 ---

Huang and Soong [28] 1990 3.2 kHz 10.0 ---
Table 6:  A summary of prior alphadigit related research in terms of WER.
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System Total WER Alphabet WER Digit WER

Cross-word Triphones 13.3% 16.5% 5.4%

Word-internal Triphones 15.2% 19.4% 5.1%

Syllables 10.4% 12.1% 6.3%
Table 7:  Alphadigit WER analysis by word category: alphabet or digit.
Confusion set Triphone System WER
Monosyllabic Word

System WER

E-Set 22.2% 18.5%

S-F pair 19.4% 17.2%

A-Set 16.7% 10.0%

Nasals 11.1% 14.3%
Table 8:  Error analysis by word category: E-Set, S-F pair, A-Set, or Nasal.
System Logical Models Real Models Number of States

Cross-word Triphones 25202 3225 2045

Word-internal Triphones 25202 1011 249

Syllables 42 42 900
Table 9:  Relative complexity of systems for alphadigit recognition.
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System
Model Set

Features
Training Testing

Baseline Triphone 11344 word-internal triph-
ones

11344 word-internal triph-
ones

State tying used
8 Gaussians/state
3 states per model

Preliminary Syllable 9023 syllables 800 syllables and con-
text-independent phones

8 Gaussians/state
Number of states propor-
tional to avg. duration

Hybrid Syllable 800 syllables and
context-independent phones

800 syllables and
context-dependent phones

8 Gaussians/state
Number of states propor-
tional to avg. duration

Monosyllabic Word 200 monosyllabic words,
632 syllables and
context-dependent phones

200 monosyllabic words,
632 syllables and
context-dependent phones

8 Gaussians/state
Number of states propor-
tional to avg. duration

Finite Duration 200 monosyllabic words,
632 syllables and
context-dependent phones

200 monosyllabic words,
632 syllables and
context-dependent phones

8 Gaussians/state
Max. stay duration in syl-
lable and word models
Table 10:  Summary of LVCSR systems discussed in the paper.
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