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ABSTRACT

Modern speech understanding systems merge interdisciplinary technologies from S
Processing, Pattern Recognition, Natural Language, and Linguistics into a unified sta
cal framework. These systems, which have applications in a wide range of signal pro
ing problems, represent a revolution in Digital Signal Processing (DSP). Once a
dominated by vector-oriented processors and linear algebra-based mathematics, th
rent generation of DSP-based systems rely on sophisticated statistical models im
mented using a complex software paradigm. Such systems are now capab
understanding continuous speech input for vocabularies of several thousand wor
operational environments. The current generation of deployed systems, based on
vocabularies of isolated words, will soon be replaced by a new technology offering na
language access to vast information resources such as the Internet, and provide com
automated voice interfaces for mundane tasks such as travel planning and directory
tance.

Keywords: Digital Signal Processing, Speech Recognition, Hidden Markov Model,
erbi Decoding, Natural Language Model, Vocabulary

1. INTRODUCTION

Automatic speech recognition has made significant strides from the days of recogn
isolated words. Today, state-of-the-art systems are capable of recognizing te
thousands of words in complex domains (reduced language sets) such as news
correspondence and travel planning. A major part of this success is due to recent adv
in language modeling and search techniques that support efficient, sub-optimal dec
over large search spaces. Focusing a recognition system on a particular domai
resulted in a steady progression from static language models towards more ada
models that consist of mixtures of bigrams, trigrams and long-distance n-grams. Simi
availability of multiple sources of information about the correct word hypothesis has le
the advent of efficient multi-pass search strategies. The result is a powerful pat
matching paradigm that has applications to a wide range of signal detection probl
Future research in large vocabulary continuous speech recognition will be dire
towards developing more efficient means of dynamically integrating such information
PICONE 1 / 14
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The aim of continuous speech recognition (CSR) is to provide an efficient and accu
mechanism to automatically transcribe speech into text. As different words are spok
different times by different people, a statistical approach to CSR is naturally. If a sequ
of words is spoken andA is the extracted acoustic evidence provided to the recognit
system, then the recognizer should decide in favor of the word stringWwhich occurs with
maximum probability givenA. Using Bayes formula, this reduces to maximizin
P(A|W)P(W). The statistical acoustic model providesP(A|W)and the statistical language

model providesP(W). In general, Hidden Markov Models1 (HMMs) are used to construct
the acoustic models, while language models are mostly based on Markov processes
observed data, the recognizer uses the acoustic models to determine the likelihood oA for
a set of word sequences (hypotheses) from the language model and is called a scor
word sequence (hypothesis) corresponding to the maximum score is one chosen as c

The number of word sequences is quite large even for a small vocabulary, and the pr
of scoring the hypotheses is computationally demanding. Therefore closed-form solu
that can be obtained using linear-algebraic methods do not exist. A search paradigm
to be employed to select a solution from numerous alternatives based on some crite

In this paper, several aspects of speech understanding systems are described inc
language modeling and search aspects of CSR. This is followed by a brief discussi
state-of-the-art systems.

2. STATISTICAL LANGUAGE MODELING

The choice and scope of a language model has significant influence on the performa
a speech recognition system. A language model provides constraints on the occurre
particular words and word sequences. Thus, it plays an important role in determinin
search space and hence the appropriate search strategy for the recognition process

The problem of language modeling becomes computationally expensive for a l
vocabulary set. The rules of simple formal grammars are inadequate to provide a suffi
framework for recognition. Real speech is not strictly grammatical and involves awkw
phrasing or abbreviated word-forms. These depend on the context of the conversat
assume a corresponding knowledge from the listener. A good language model shou
able to incorporate such grammatical constraints, topical dependencies, const
imposed by the accent and style of the speaker etc. It should also be compact enou
allow a reasonably efficient real-time implementation.

A framework is needed to objectively compare different language models to determ
which one is best. Appropriate goodness criterion are discussed next.

2.1. Perplexity

Perplexity2 is an objective measure of language model quality and derives its roots f
information theory. A language source (e.g. a speaker) provides information in speak
word by removing the uncertainty about the identity of that word. The greater
PICONE 2 / 14
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uncertainty about the next word, more is the information contained in it. Informat
conveyed by the occurrence of an event is defined to be the negative logarithm o
occurrence probability of the event. The average information contained in a w
sequence is called theentropy of the sequence.

A language model is viewed as a random sequence (process) of words and therefo

some entropyH(w). Theperplexityof this model is given byP = 2H(w). The value of
perplexity depends on the data from which the language model is trained as well as o
test data. Words are treated as abstract symbols which means acoustic similarity be
words is not taken into account. A language model with low perplexity provides so
bounds on the performance of the system, as the recognizer has a correspondingly s
number of equiprobable choices to pick from. However for acoustically similar wor
performance of the recognizer suffers irrespective of perplexity. Thus, perplexity is
necessarily related to accuracy but a good language model should be able to satisfy b
these criteria.

2.2. Static Language Models

Language models are used by CSR systems to apply various levels of constraints
recognizer. A uniform language model, that assigns equal probabilities to all words in
vocabulary, does not impose a constraint on the recognizer and therefore is not
useful. It is necessary to determine information about the identity of the current worwi

given its history, i.e. the word sequenceWN = (wi-1, wi-2, ...,wi-N).

In a statistical model, the occurrence probability of the word sequenceWN corresponding
to the most previousN words is used to predict the probability of the current wordwi. A

language model that uses this approach is called anN-gram model3. Experience has shown
that a value ofN greater than 3 is not practical for implementation except on extrem
small vocabularies and therefore it is typically limited to 2 (bigram model) or 3 (trigra
model). A trigram is better than a bigram model in terms of both accuracy and perple
since it carries more information.

TheN-gram model is simple yet powerful4. However it is also static in the sense that th
model and parameters are established via training data prior to system operation. S
uses only the immediate word history and does not depend on or vary with the data
observed, it is not capable of adapting to the style or topic of the input text and ca
exploit these to enhance the probabilities of related words while suppressing tho
others. Therefore dynamic models have been explored.

2.3. Dynamic Language Models

An adaptive or dynamic model improves upon the performance of a static trigram m
by changing estimates of word probabilities depending upon the part of the input
observed so far. This is particularly useful when a model trained on data pertaining to
domain is used in another domain. Also, if a large language source is envisioned to co
of small homogeneous chunks or sublanguages (e.g. newspaper articles), then an a
PICONE 3 / 14
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model trained on the heterogeneous source can exploit the sublanguage struct
improve performance. Some language models that attempt to capture these long-di
linguistic phenomena like topic-dependence are the following:

Long-distanceN-grams: These are similar to conventionalN-grams except that they

precede the current word byj positions5.

Triggers: A trigger pair6,7 consists of two word sequences where the occurrence of
changes the probability estimate of the other. Constructing a trigger model invo
eliminating all pairs of word sequences that are occur with small probability. The eff
of several triggers towards the triggered sequence are combined and the tr
information is integrated with the static model in a way that preserves the advantag
both.

A Maximum Entropy (ME) algorithm8,9 is used to train the trigger-based language mod
While the ME approach is intuitively simple, easy to implement to a variety of proble
and guaranteed to converge to a solution; it suffers from exorbitant memory
computation requirements and does not have a well-defined rate of convergence.

Cache Models: Once a word (or word sequence) occurs in a document, it is more like
occur again. This tendency is particularly true of rare words, but the trend becomes
evident for more frequently occurring words. Based on this phenomenon, the lastL words
(or word sequences) of the document seen so far are stored in a cache. This cache

to estimate the dynamic unigram, bigram and trigram probabilities10,11,12and then
incorporated with the static model using interpolation techniques. Caches can als
formed based on the number of timeswi has already appeared in the history and based
distance, i.e. the last timewi occurred in the history.

Class Grammars: Instead of words, classes of words are taken as the units of the m
The probability of word occurrence is determined by the probability of occurrence of
word class.

Tree-based models: These models13 generate a binary decision tree from the training da
to cluster word histories. Each node of the tree is associated with a state of the lang
model and each leaf corresponds to a legal word sequence. The tree is constructed
yes/no questions that reduce the uncertainty of predicting the next word at every nod
thus minimize the average entropy at every leaf. However, these methods
computationally expensive.

Mixture models: The language model is built as a mixture of several component mo
each of which is trained on theN-gram statistics of a particular topic or broad class
sentences. The component models can be combined using either dynamic-weight mi

at theN-gram level14 or static-weight mixtures at the sentence level15,16. The topics can be
specified by hand, or can be determined automatically using clustering techniq
Robustness of parameter estimation for mixture components is an important issue
PICONE 4 / 14
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each component model is trained only on a part of the available data which correspon
a particular topic.

2.4. Other Techniques

There are various other techniques of language modeling that have different prope

For instance, while context-free17 and unification18 models are more realistic, they are

computationally cumbersome. On the other hand, finite state19,20models that try to model
all legal sentences in a single network are constraining but they are not as realistic.

After incorporating both the language model and the acoustic model in the recogn
system, data evaluation and the search for the best hypothesis is the next step. This
of CSR is discussed in the following section.

3. SEARCH IN CSR

A decoding strategy is used to find the most likely word sequence given the languag
acoustic models and a spoken utterance. A simple and intuitively obvious search str
would be to simply enumerate all possible hypotheses and pick the most likely
However, since the number of possible hypotheses grow exponentially with the leng
the word sequence, this enumerative search is practical only for trivial tasks. For m
realistic problems, this unrestricted search algorithm must be restructured so tha

recognizer can find a solution in a finite amount of time21. The hypothesis generating
process is optimized by merging common partial hypotheses. The search space is re
by heuristically pruning away hypotheses with low scores. Applying such transformat
to the problem space causes the system to make suboptimal decisions, though this do
seem to affect the accuracy of recognition. External knowledge sources are als
employed to improve search efficiency. Two commonly used search algorithms
employ the above techniques are the Viterbi algorithm and Stack decoding algorithm

3.1. Viterbi Search

The recognition system can be treated as a recursive transition network composed
states of Hidden Markov Models (HMMs) in which any state can be reached from

other. The Viterbi search algorithm22 builds a breadth-first search tree out of this netwo
in the following fashion:

1. The input utterance is broken into N segments. For theith segment, a list of states
are formed and are denotedS(i). These lists are initialized by setting the
probability of the initial state as 1 and the others 0.

2. For each states in S(i) and for each possible transition froms to some states’ in
S(i+1), compute the transition probabilityP(s’|s). If s’ is uninitialized, initialize
it with scoreP(s’|s) and a backpointer tos, else update scores’ only if this
transition gives a better score.
PICONE 5 / 14
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3. If i = N backtrack; else go to step 2 withi = i + 1.

Viterbi search is time-synchronous; i.e. at any stage all partial hypotheses correspo
the same portion of the utterance and hence can be directly compared. Howev
complete Viterbi search is impractical for even moderate-sized tasks because of the s

the state space. A Viterbi beam search23,24,25,26 is used to reduce the search space.

In a Viterbi beam search strategy, only hypotheses whose likelihoods fall within a fi
radius of the most likely hypothesis are considered. It is a dynamic programm
technique that exploits the observation that many states in the state lists have zero o
zero scores and therefore need not be considered in the final word sequence choic
best beam size can be determined empirically or adaptively. The advantage of the dyn
beam heuristics is that it allows the search to consider many good hypotheses i
absence of a clearly dominant solution. Conversely, in case of a clear best hypothes
others need to be maintained. The main problem with this strategy is that the same
occurring in different paths needs to be recomputed each time which adds
computational cost.

Many variations of Viterbi beam search have been proposed to improve its performa

The state space can be partitioned into subsets that are subject to different beam wid27.
If there is more information in the form of a larger number of contextual states a tig
pruning threshold is applied. A maximum of path scores may be taken when they mer

word boundaries and a sum when the merging is within a word24. In another modification,
additional pruning is performed at the frame level to evaluate only a few best-sco

states28. This pruning is typically done only at the few initial frames as almost 95%
hypotheses are generated here. In very large vocabulary problems, a tree struc
network in which the states corresponding to common initial phones are share

different words can be used29. This uses the fact that the uncertainty about the identity
the word is much higher at its beginning than at the end and therefore more computat
required for the initial phones than the latter ones.

3.2. Stack Decoding

Stack decoding search30 is a depth-first technique similar to theA* search31 in artificial
intelligence. It constructs a search tree from the language model state graph whe
states correspond to abstract states in the language and the branches represent tra

between these states. The basic stack decoder paradigm32,33 can be summarized as:

1. Pop the best partial hypothesis from the stack

2. Apply acoustic and language model fast matches to shortlist the candidate
word. Fast matches are computationally inexpensive methods for reducing
number of word extensions which need to be checked by the more accurat
computationally expensive detailed matches.
PICONE 6 / 14
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3. Apply acoustic and language model detailed matches to candidate words.

4. Choose the most likely next word and update all hypotheses.

5. Insert surviving new hypotheses into the stack.

TheA* stack decoder efficiently combines all information into a single unified one-pa
search, though it suffers from problems of speed, size, accuracy and robustness. Ho
several variations use less optimal but simpler initial acoustic and language mode
produce a list of likely hypotheses that are later refined using more detailed and expe
models. These have been proposed to improve overall performance.

3.3. N-Best Search

The optimalN-best decoding algorithm34 is similar to the Viterbi search. However, while
Viterbi decoding is inherently 1-best,N-best search finds all hypothesis sequences with
the specified beam and keeps track of hypotheses with different histories at each
Then onlyN top-scoring hypotheses are allowed to propagate to the next state. This s
dependent pruning is independent of the global Viterbi beam threshold.

The sources of information on speech used for recognition purposes can be extre
diverse and are generally associated with different computation and memory cos
hypothesis that scores the highest given all these knowledge sources will be an op
solution to the recognition problem. But this typically requires an impractically lar
search space. It is advantageous to use a strategy in which the most efficient know
sources are used first to generate a list of topN hypotheses. These hypotheses can later
re-evaluated with other, more expensive knowledge sources to arrive at the
hypothesis.N-best search provides an efficient method of integrating different knowle
sources and makes the search process more modular. The scores from different know

sources can be combined using weights chosen to minimize the recognition error35.

TheN-best paradigm as described above has the problem of being partial towards s
hypotheses. In other words, if the single-word recognition-error probability is roug
independent of sentence position, then a longer sentence will have more error
therefore will be pushed down in the rank of correct hypotheses. Thus an exactN-best
search will require a very large value ofN to find the correct answer for a long sentence

A number of modifications have been proposed to overcome this problem and to mak
best search more accurate and efficient. These modifications allow for so
approximations to generate the list of sentences with much less computation.
approximations are justified as long as the correct hypothesis is assured to be in thi
Even if it does not hold a very high rank in this preliminary list, the correct hypothesis
be found later by rescoring on other knowledge sources.
PICONE 7 / 14
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3.4. Lattice N-Best Algorithm

An initial pass of the recognition system is used to build a lattice of word (or phonem
syllable, etc.) hypotheses which are searched by subsequent passes to generate the
hypothesis. A time-synchronous one-best forward-pass search algorithm is used w
words and at each frame all the theories and their respective scores are store
traceback list. The best score at this frame is sent forward along with a backpointer t

saved list36. TheN-best sentences are obtained by recursive search through this trace
list. This algorithm is extremely fast but often underestimates or misses high-sco
hypotheses.

A progressive search37 can be used to avoid this problem. Here a lattice of all senten
hypotheses is maintained instead of evaluating independent sentence hypothese
lattice is treated as a grammar and used to rescore all the hypotheses.

3.5. Word-Dependent N-Best Search

This algorithm differentiates between hypotheses on the basis of the previous word in

of the whole preceding sequence36. The probability for each of the different precedin
words is stored within the word at each state. At the end of the word the score for
hypothesis and the name of the previous word are recorded. A recursive traceback is
at the end of the sentence to derive the list of the most likely sentences.

3.6. Forward-Backward Search

Forward-backward search algorithms use an approximate time-synchronous search
forward direction to facilitate a more complex and expensive search in the backw

direction36,38,39,40. This generally results in speeding up the search process on
backward pass as the number of hypotheses to be explored is greatly reduced b
forward search. A simplified acoustic or language model is used to perform a fast
efficient forward-pass search in which the scores of all partial hypotheses that fall ab
pruning beamwidth are stored at every state. Then a normal within-word beam sea
performed in the backward direction to generate theN-best hypotheses list. The backwar
search scores high on a hypothesis only if there also exists a good forward path lead
a word-ending at that time.

Since the forward-backward search allows use of different models on the two pass
complex model can be used on the backward pass to come up with extremely acc

results41. The forward scores, though not exact, are good enough estimates of the
end scores and can be further modified by normalizing relative to the highest score in
frame. The time-synchronous nature of both passes allow them to have diffe
normalized scores without loss of accuracy.

Forward-backward search algorithms have greatly facilitated real-time handling of la
scale tasks. The backward pass search is fast enough to be performed withou
perceptible delay after the forward search. The forward search can be made
PICONE 8 / 14
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approximate and hence efficient as the scores need not be very accurate on the fo
pass.

A variation of the forward-backwardN-best search is a tree-trellis based fast sear

algorithm42 that uses a modified Viterbi beam algorithm in the forward pass and anA*
stack decoder search on the backward pass. The partial hypothesis map prepared
forward trellis search is used by the backward search to estimate the incomplete port
the partial hypothesis.

3.7. Frame-Synchronous Viterbi Search

In Frame-Synchronous Viterbi Search (FSVS), the number of hypotheses in
conventional Viterbi beam search are controlled by limiting the number of mod
evaluated at each frame of the input data. This is done by sorting all active hypothes
decreasing order of path score and pruning away all but a few top-scoring hypothes
the end of every frame. Thus at any level, the total number of hypotheses forwarded t
next frame is limited.

This pruning of hypotheses is different from the Viterbi beam pruning. While the Vite
scores are compared with the pruning threshold only at the top level in the hierarchy
FSVS pruning is carried out at all levels. FSVS pruning can be dynamic where the pru
threshold is decided according to the level and/or in an adaptive fashion. Alternative
can be static, i.e. fixed by some upper limit on the number of possible hypotheses
choice of pruning strategy and the value of the threshold (or limit on number
hypotheses) are specific to the application.

Care must be taken in choosing the threshold for frame-level pruning in order to a
over-pruning of hypotheses, because this will stop even potentially correct hypoth
from advancing and affect the accuracy of recognition.

4. STATE-OF-THE-ART

To date, a number of research groups have implemented various algorithms in an at
to address the automatic speech understanding problem. These include groups at Ca
Mellon University, BBN, Cambridge University, IBM T. J. Watson Research Center, M
Lincoln Labs, SRI International, and Philips Research Laboratories. Most of the sys
developed to date use HMMs along with bigram or trigram language models.

To test these systems, a number of speech databases have been collected on s
domains. For example, the WSJ domain consists of utterances spoken from articles
in the Wall-Street Journal. The North American Business (NAB) News domain consis
any article which involves business or financial news for North American markets. Sev

specific databases have been collected for each of these domains43,44,45. Conventionally,
word-error rate is the performance measure used to judge system robustness. To

word-error rates as low as 8% have been achieved46-51.
PICONE 9 / 14
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Although great strides have been made in the automated speech recognition area, it

known that human performance is roughly an order of magnitude lower52. Whether the
state-of-the-art machine performance level is robust enough to produce useful sp
based interfaces with machines is still in debate.

5. CONCLUSION

The techniques described here have been incorporated to some extent into most m
day large vocabulary systems. Use of such techniques in acoustic and language mo
have resulted in real-time implementation of systems capable of recognizing over 40

words in modest amounts of general purpose hardware27,33,37.

However, these advances still fall far short of demands of operational systems
example, the same technology performs at a 50% word error rate on conversational s
collected over the telephone. Even under laboratory conditions, such technology is u
to handle many conversational speech phenomena (referred to as dysfluencies
example, one such common phenomena that is poorly represented in today’s syste
called false-start (“Please give me, uh, no, just a second, ok, please give me a red o

Future research must be oriented towards exploring alternative language model
improve performance by providing the recognizer with more specific context,
significantly reduce the search space. This may focus on dynamic language model
accurately incorporate the long-distance effects of word occurrence.

6. BIBLIOGRAPHY

1. L. R. Rabiner, ``A Tutorial on Hidden Markov Models and Selected Applications
Speech Recognition’’, Proceedings IEEE, Vol. 77, No. 2, pp. 257-285, February 1989

2. F. Jelinek, R. L. Mercer and S. Roukos, ``Principles of Lexical Modeling for Spe
Recognition’’, from Advances in Speech Signal Processing, edited by S. Furui and M
Sondhi, pp. 651-699, Marcel Dakker Inc., 1992.

3. L. R. Bahl, F. Jelinek and R. L. Mercer, ``A Statistical Approach to Continuous Spe
Recognition’’, IEEE Transactions on PAMI, 1983.

4. F. Jelinek, ``Up From Trigrams!’’, Eurospeech 1991.

5. X. D. Huang, F. Alleva, H. W. Hon, M. Y. Hwang, K. F. Lee and R. Rosenfeld, ``T
SPHINX-II Speech Recognition System: An Overview’’, Computer, Speech a
Language, 1992.

6. R. Rosenfeld and X. D. Huang, ``Improvements in Stochastic Language Modelin
Proceedings DARPA Speech and Natural Language Workshop, February 1992.
PICONE 10 / 14



’’,
94.

py

um

s in
290-

ch
293-

ech

ical
s on

’’,

g a
gy

ton

ree

mar

on’’,

. L.
tate
7. R. Rosenfeld, ``A Hybrid Approach to Adaptive Statistical Language Modeling
Proceedings DARPA Human Language Technology Workshop, pp. 76-81, March 19

8. R. Rosenfeld, ``Adaptive Statistical Language Modeling: A Maximum Entro
Approach’’, Ph.D. Thesis Proposal, Carnegie Mellon University, September 1992.

9.R. Lau, R. Rosenfeld and S. Roukos, ``Trigger-Based Language Models: A Maxim
Entropy Approach’’, Proceedings ICASSP, Vol. 2, pp. 45-48, April 1993.

10. J. Kupiec, ``Probabilistic Models of Short and Long Distance Word Dependencie
Running Text’’, Proceedings ARPA Workshop on Speech and Natural Language, pp.
295, February 1989.

11. F. Jelinek, B. Merialdo, S. Roukos and M. Strauss, ``A Dynamic LM for Spee
Recognition’’, Proceedings ARPA workshop on Speech and Natural Language, pp.
295, 1991.

12. R. Kuhn and R. de Mori, ``A Cache Based Natural Language Model for Spe
Recognition’’, IEEE Transactions on PAMI, Vol. 14, pp. 570-583, 1992.

13. L. Bahl, P. F. Brown, P. V. de Souza and R. L. Mercer, ``A Tree-Based Statist
Language Model for Natural Language Speech Recognition’’, IEEE Transaction
ASSP, Vol. 37, No. 7, pp. 1001-1008, 1989.

14. R. Kneser and V. Steinbiss, ``On the Dynamic Adaptation of Stochastic LM
Proceedings ICASSP, Vol. 2, pp. 586-589, April 1993.

15. R. Iyer, M. Ostendorf and J. R. Rohlicek, ``An Improved Language Model Usin
Mixture of Markov Components’’, Proceedings DARPA Human Language Technolo
Workshop, pp. 82-86, March 1994.

16. R. Iyer, ``Language Modeling with Sentence-Level Mixtures’’, M.S. Thesis, Bos
University, 1994.

17. H. Ney, ``Dynamic Programming Speech Recognition Using A Context-F
Grammar’’, Proceedings ICASSP, pp. 321-324, April 1987.

18. C. Hemphill and J. Picone, ``Robust Speech Recognition in a Unification Gram
Framework’’, Proceedings ICASSP, pp. 723-726, May 1989.

19. J. K. Baker, ``Stochastic Modeling as a Means of Automatic Speech Recogniti
Ph.D. Thesis, Carnegie Mellon University, 1975.

20. L. R. Bahl, J. K. Baker, P. S. Cohen, A. G. Cole, F. Jelinek, B. L. Lewis and R
Mercer, ``Automatic Recognition of Continuously Spoken Sentences from A Finite S
Grammar’’, Proceedings ICASSP, pp. 418-421, April 1978.
PICONE 11 / 14



ech
Inc.,

al
0-

gie

J.
ch

ous

he
ings

ng
ch

ical
stern

esign
age

ech

w

ch
409,

’’,
21. K. F. Lee and F. Alleva, ``Continuous Speech Recognition’’, from Advances in Spe
Signal Processing, edited by S. Furui and M. M. Sondhi, pp. 651-699, Marcel Dakker
1992.

22. A. J. Viterbi, ``Error Bounds for Convolutional Codes and an Asymptotically Optim
Decoding Algorithm’’, IEEE Transactions on Information Theory, Vol. IT-13, pp. 26
269, April 1967.

23. B. T. Lowerre, ``The HARPY Speech Recognition System’’, Ph.D. Thesis, Carne
Mellon University, 1976.

24. Y. L. Chow, M. Ostendorf-Dunham, O. A. Kimball, M. A. Krasner, G. F. Kubala,
Makhoul, S. Roukos and R. M. Schwartz, ``BYBLOS: The BBN Continuous Spee
Recognition System’’, Proceedings ICASSP, pp. 89-92, April 1987.

25. K. F. Lee and H. W. Hon, ``Large-Vocabulary Speaker-Independent Continu
Speech Recognition’’, Proceedings ICASSP, pp. 123-126, April 1987.

26. H. Ney, D. Mergel, A. Noll and A. Paeseler, ``A Data-Driven Organization of t
Dynamic Programming Beam Search for Continuous Speech Recognition’’, Proceed
ICASSP, pp. 833-836, April 1987.

27. F. Alleva, H. Hon, X. Huang, M. Hwang, R. Rosenfeld and R. Weide, ``Applyi
SPHINX-II to the DARPA Wall Street Journal CSR Task’’, Proceedings DARPA Spee
and Natural Language Workshop, pp. 393-398, 1992.

28. N. Deshmukh, J. Picone and Y. H. Kao, ``Efficient Search Strategies in Hierarch
Pattern Recognition Systems’’, to appear in Proceedings of 27th IEEE Southea
Symposium on System Theory, March 1995.

29. J. J. Odell, V. Valtchev, P. C. Woodland and S. J. Young, ``A One Pass Decoder D
for Large Vocabulary Recognition’’, Proceedings DARPA Speech and Natural Langu
Workshop, pp. 380-385, 1992.

30. R. L. Bahl, et al., ``Large Vocabulary Natural Language Continuous Spe
Recognition’’, Proceedings ICASSP, pp. 465-467, May 1989.

31. N. J. Nilsson, Problem Solving Methods in Artificial Intelligence, McGraw-Hill, Ne
York, 1971.

32. D. B. Paul, ``An Efficient A* Stack Decoder Algorithm for Continuous Spee
Recognition with a Stochastic Language Model’’, Proceedings ICASSP, pp. 405-
March 1992.

33. D. B. Paul, ``The Lincoln Large-Vocabulary Stack Decoder Based HMM CSR
Proceedings ICASSP, pp. 374-379, April 1993.
PICONE 12 / 14



or
ural

st
-456,

est
June

rch
an

for
gs

?’’,
994.

ning
dio

for
04,

e N
P, pp.

,” in
tems

am,”
34. Y. L. Chow and R. M. Schwartz, ``The N-Best Algorithm: An Efficient Procedure f
Finding Top N Sentence Hypotheses’’, Proceedings DARPA Speech and Nat
Language Workshop, pp. 199-202, October 1989.

35. A. Kannan, M. Ostendorf and J. R. Rohlicek, ``Weight Estimation in N-Be
Rescoring’’, Proceedings DARPA Speech and Natural Language Workshop, pp. 455
February 1992.

36. R. M. Schwartz and S. Austin, ``Efficient, High-Performance Algorithms for N-B
Search’’, Proceedings DARPA Speech and Natural Language Workshop, pp. 6-11,
1990.

37. H. Murveit, J. Butzberger, V. Digalakis and M. Weintraub, ``Progressive-Sea
Algorithms for Large-Vocabulary Speech Recognition’’, Proceedings DARPA Hum
Language Technology Workshop, March 1993.

38. L. Nguyen, R. Schwartz, F. Kubala and P. Placeway, ``Search Algorithms
Software-Only Real-Time Recognition with Very Large Vocabularies’’, Proceedin
DARPA Human Language Technology Workshop, pp. 91-95, March 1993.

39. L. Nguyen, R. Schwartz, Y. Zhao and G. Zavaliagkos, ``Is N-Best Dead
Proceedings DARPA Human Language Technology Workshop, pp. 386-388, March 1

40. J. K. Chen and F. K. Soong, ``An N-Best Candidates-Based Discriminative Trai
for Speech Recognition Applications’’, IEEE Transactions on Speech and Au
Processing, Vol. 2, No. 1, Part II, pp. 206-216, January 1994.

41. R. Schwartz and S. Austin, ``A Comparison of Several Approximate Algorithms
Finding Multiple (N-Best) Sentence Hypotheses’’, Proceedings ICASSP, pp. 701-7
1991.

42. F. K. Soong and E. F. Huang, ``A Tree-Trellis Based Fast Search for Finding th
Best Sentence Hypotheses in Continuous Speech Recognition’’, Proceedings ICASS
705-708, 1991.

43. B. Paul, J. M. Baker, “The Design for the Wall Street Journal-based CSR Corpus
Proceedings of the 1992 International Conference on Spoken Language Sys,
pp. 899-902, Banff, Alberta, Canada, October 1992.

44. F. Kubala, “Design of the 1994 CSR Benchmark Tests,” inProceedings of the 1995
ARPA Human Language Technology Workshop, Austin, Texas, USA, January 1995.

45. D.S. Pallett, et. al., “1994 Benchmark Tests for the ARPA Spoken Language Progr
in Proceedings of the 1995 ARPA Human Language Technology Workshop, Austin, Texas,
USA, January 1995.
PICONE 13 / 14



g in
hop

re
hop

ech
gy

ech

ge-
e

ry
gy

CSR
hop
46. L. Chase, et. al., “Improvements in Language, Lexical, and Phonetic Modelin
Sphinx-II,” in Proceedings of the 1995 ARPA Human Language Technology Works,
Austin, Texas, USA, January 1995.

47. G. Zavaliagkos, et. al., “Adaptation Algorithms for BBN’s Phonetically Tied Mixtu
System,” inProceedings of the 1995 ARPA Human Language Technology Works,
Austin, Texas, USA, January 1995.

48. P.C. Woodland, “The Development of the 1994 HTK Large Vocabulary Spe
Recognition System,” inProceedings of the 1995 ARPA Human Language Technolo
Workshop, Austin, Texas, USA, January 1995.

49. L.R. Bahl, et. al., “Performance of the IBM Large Vocabulary Continuous Spe
Recognition System on the ARPA NAB News Task,” inProceedings of the 1995 ARPA
Human Language Technology Workshop, Austin, Texas, USA, January 1995.

50. D.B. Paul, “New Developments in the Lincoln Stack-Decoder Based Lar
Vocabulary CSR System,” inProceedings of the 1995 ARPA Human Languag
Technology Workshop, Austin, Texas, USA, January 1995.

51. M.M. Hochberg, “The 1994 ABBOT Hybrid Connectionist-HMM Large-Vocabula
Recognition System,” inProceedings of the 1995 ARPA Human Language Technolo
Workshop, Austin, Texas, USA, January 1995.

52. W.J. Ebel and J. Picone, “Human Speech Recognition Performance on the 1994
S10 Corpus,” inProceedings of the 1995 ARPA Human Language Technology Works,
Austin, Texas, USA, January 1995.
PICONE 14 / 14


	Institute for Signal and Information Processing
	Mississippi State University
	Mississippi State, Mississippi 39762
	{ebel, picone}@ee.msstate.edu
	Boston University
	Department of Electrical Engineering
	Boston, MA 02215
	neeraj@vlsi.bu.edu
	ABSTRACT
	1.�� INTRODUCTION
	2.�� STATISTICAL LANGUAGE MODELING
	2.1.�� Perplexity
	2.2.�� Static Language Models
	2.3.�� Dynamic Language Models
	2.4.�� Other Techniques

	3.�� SEARCH IN CSR
	3.1.�� Viterbi Search
	3.2.�� Stack Decoding
	3.3.�� N-Best Search
	3.4.�� Lattice N-Best Algorithm
	3.5.�� Word-Dependent N-Best Search
	3.6.�� Forward-Backward Search
	3.7.�� Frame-Synchronous Viterbi Search

	4.�� STATE-OF-THE-ART
	5.�� CONCLUSION
	6.�� BIBLIOGRAPHY

	Automated Speech Understanding: The Next Generation
	J. Picone, W.J.�Ebel, N. Deshmukh


