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Decomposition of the LPC Excitation Using the Zinc 
Basis Functions 

Abstract-In this paper,  a new Linear Predictive Coding (LPC) ex- 
citation signal is introduced. The excitation signal is composed of a set 
of orthogonal functions called zinc functions. Zinc functions a re  shown 
to form a complete orthogonal set and  have properties that  a r e  well 
suited for modeling the LPC residual signal. A benchmark comparison 
between Fourier series and  zinc function modeling shows that the zinc 
function model for the residual is superior,  in the mean-squared e r ro r  
sense, to the Fourier series model. The zinc basis functions a re  used in 
two low bit rate speech coding systems targeted at  the 4.8-9.6 kbi t / s  
range. The first is a Zinc Excited LPC (ZELPC) system where the 
voiced excitation is modeled using the zinc functions, while the un- 
voiced excitation is represented by the usual white noise source. Re- 
sults indicate that ZELPC synthetic speech is less “huzzy” and  pre- 
serves speaker identity to a larger extent compared to synthetic speech 
from a conventional vocoder. The second system is a Zinc Multipulse 
LPC (ZMPLPC) system, where the LPC excitation is constructed using 
the zinc basis functions instead of the usual ideal impulses. Results 
show that,  given a fixed segmental signal-to-noise ratio, with similar 
computational complexity, the ZMPLPC system is more efficient than 
a conventional Multipulse LPC (MPLPC) system. Subjective listening 
tests also indicate a preference for the ZMPLPC system. 

I. INTRODUCT~ON 
HE basic premise of many research efforts [ 11-[4] has T been that LPC synthetic speech quality can be im- 

proved by improving the model for the LPC excitation. 
These research efforts were mainly directed toward re- 
ducing the unnaturalness or buzziness that characterizes 
LPC synthetic speech. For instance, Sambur et al. [ 11 and 
Rosenburg [2] have shown that there is a direct correla- 
tion between the pitch pulse shapes used to represent the 
voiced excitation and the buzziness of the synthetic 
speech. Makhoul [3] found that the harmonic structure of 
voiced speech tends to break up at high frequencies. This, 
he concluded, has a direct effect on the naturalness of the 
synthetic speech. In his experiment, Makhoul used a 
mixed excitation of periodic pulses and noise to drive the 
LPC synthesis filter during voiced frames. To generate 
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this mixed excitation, periodic pulses were low-pass til- 
tered with a cutoff frequency of F,., and then added to 
high-pass filtered noise (again the cutoff frequency is set 
to F,.). The parameter F,. was made adaptive throughout 
voiced utterances. Makhoul claimed that this type of ex- 
citation reduced the buzz somewhat. 

Many other models have been proposed [SI-[SI for rep- 
resenting the LPC voiced excitation. A brief description 
of some of the commonly used models for LPC voiced 
excitation follows. 

Ideal Impulses: This type of voiced excitation consists 
of periodically spaced impulses where the period is equal 
to the pitch period. This impulse train signal has a discrete 
amplitude spectrum that is flat, a property that is desirable 
for any excitation signal in an LPC synthesizer. 

Fourier Series: This voiced excitation signal uses a 
Fourier series expansion [5], [6]. In this case, the exci- 
tation signal is given as 

N 

e ( r )  = bk cos ( 2 ~ k J , r  + O k ) ,  ( 1 )  
k = l  

where&, is the pitch frequency for the voiced frame, Ok is 
the phase of the kth harmonic, and bk is the amplitude of 
the kth harmonic. 

Using a Fourier series expansion for the voiced exci- 
tation signal. Atal et al. [ 5 ]  compared synthetic speech 
quality under two conditions. First, all the parameters bk 
were set equal, and second, they were set to the true Fou- 
rier coefficients derived by performing a short time spec- 
tral analysis on the residual of the voiced frames. Simul- 
taneously, Atal studied the effect of the parameters Or on 
speech quality. They were first held constant and then al- 
lowed to change with respect to time (i .e. ,  from frame to 
frame) and over frequency. He concluded that using the 
true Fourier series amplitudes produced a much better 
speech quality than that produced when they were fixed. 
He also concluded that speech produced by allowing the 
phases to vary with frequency was better in quality than 
that produced by holding them constant for all frequen- 
cies. However, changing the phases from frame to frame 
did not produce a significant improvement in synthetic 
speech quality. 

Glottal Pulses: Rosenberg [2] introduced a family of 
pulses that can be represented mathematically with either 
a polynomial or a trigonometric function. The voiced ex- 
citation in this case is represented by periodically spaced 
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glottal pulses where the period is equal to the pitch pe- 
riod. An important point to mention about these glottal 
pulses is that their amplitude spectra are not flat. Instead, 
they are more or less low pass. This in turn results in the 
excitation signal spectrum being low pass. 

Chirp: A chirp excitation signal [7] is composed of pe- 
riodically spaced pulses each of which is described by 

c ( t )  = sin ( w o t 2 ) ,  o < t < 7, 

= 0, elsewhere, ( 2 )  
where U,) is a constant and 7 is the duration of the pulse. 
As 7 + CO, the Fourier transform of c (  t )  can be written 
as 

Note that wo governs the amount of amplitude spectrum 
rolloff in the frequency band of interest. 

Multipulse: Multipulse excitation [8] is based on an 
analysis-by-synthesis LPC system. At the analysis stage, 
a set of impulses with amplitudes and frame locations is 
chosen such that if the synthesizer were excited with these 
impulses, then the mean-squared error between the syn- 
thetic speech and the original speech would be minimum. 

Mixed Excirurion: This type of excitation, where a 
pulse signal and white noise are combined, was discussed 
above. 

In this paper, the LPC excitation is represented using a 
set of basis functions, called zinc functions. The zinc 
functions are defined in Section I1 and it is shown that 
they form a complete orthogonal set spanning the space 
of all band-limited signals. In Section 111, the zinc basis 
functions are used to model the LPC residual. It is shown 
that the zinc functions have properties well suited for 
modeling the residual. The results of a benchmark com- 
parison between Fourier series and zinc function residual 
modeling are given. In Section IV,  the zinc functions are 
used to model the voiced excitation in an LPC analysis/ 
synthesis vocoder-type system. The resulting synthetic 
speech quality is evaluated through subjective listening 
tests and then compared to speech produced by a conven- 
tional vocoder system. In Section V ,  the zinc basis func- 
tions are employed in a multipulse system. Improvements 
in speech quality and segmental signal-to-noise ratio over 
a regular multipulse system are shown. 

11. ZINC FUNCTION DECOMPOSITION OF A BAND- 
LIMITED SIGNAL 

Signal representation (or modeling) based on orthogo- 
nal function decomposition provides a very attractive 
method for quantitatively representing a given signal. This 
choice of representation is motivated by mathematical 
convenience and often ease of visualization that are as- 
sociated with orthogonal functions. With such a modeling 
method, the number of parameters needed to result in a 
predefined modeling error value can be minimized by 
using a set of basis functions that have similar character- 

istics to the signal being modeled. In this paper we are 
concerned with signals that are band-limited and pulse- 
type, two important characteristics of the LPC excitation. 
It is therefore desirable to represent these signals with a 
set of basis functions that are also band-limited and pulse- 
t Y  Pe. 

The zinc function is defined as 

z ( r )  = A Sinc ( t )  + B Cosc ( t ) ,  (4 )  

where 

sin ( 27r-;I) 
Sinc ( r )  = 

27rA.t ’ 

and 

1 - cos ( 2 ~ r f , r )  
27rA.f 

Cosc ( f )  = 

Here A ,  B,  andf, are constants. For notational simplicity, 
we shall use the t e r m s i  and 1 / T ,  interchangeably. Time 
and frequency characteristics of the zinc function are 
shown in Figs. 1 and 2, respectively. In Fig. 1, several 
zinc functions are plotted for different values of A and B 
under the constraint A‘ + B’ = 1 where 27rL is set to 
unity. Fig. 2 shows the zinc function frequency charac- 
teristics. Note that the Fourier transform of z ( f )  can be 
written as 

Z ( w )  = 0 .5T , (A’  + B’)”?e”’, 0 < w < 27rf,, 

-27rji < w < 0. = 0.5T,(A’ + B’)’’’e/@. 

= 0 ,  elsewhere, ( 7 )  

where 

It is clear from Fig. 1 that z ( t )  is pulse-like, and clear 
from Fig. 2 that it is band-limited, with the cutoff fre- 
quency being f, . 

Let us now define a set of functions consisting of time- 
shifted zinc functions, that is, 

z , , ( t )  = z ( r  - A, l )  

= A,, Sinc ( t  - A,,) + B,, Cosc ( t  - A , l ) .  (9)  

The orthogonality property of the functions in (9) is de- 
pendent on the parameter A,z. It is shown in Appendix A 
that 

m 

Sinc ( t )  Sinc ( r  - A )  dr = 0, ( 10) S-, 
and 

rn 

Cosc ( I )  Cosc ( I  - A )  nr = 0, ( 1 1 )  S-, 
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Fig. I ,  Time domain characteristics of the zinc function. : ( I )  = A sin 
1 - cos ( ? T ~ ~ I ) ] / ~ T , ~ ; I .  for diff'erent values o f A  ( I T ~ ; / ) / ? T , / ; I  + 

and 8 under the constraints A' + B 2  = I and = I .  

, [O.ST,(A* + p2)'" 

_y 
Fig. 2 .  Frequency domain characteristic5 of the zinc function showing a 

white and band-limited amplitude spectrum and a constant phase 0 = 
tan I ( R I A  ) .  

for A = 0.5nT,., where n is an integer other than zero. It 
is also shown that 

im Cosc ( t )  Sinc ( t  - A )  dt 
-m 

for A = nT,., where n is an integer. Therefore, if A,, i n  (9) 
is set to nT,., where n is an integer, then the resulting set 
of zinc functions are orthogonal. Note also that each zinc 
function is itself composed of orthogonal functions, Sinc 
( t  - A,,)  and Cosc ( t  - A, , ) ,  for any value of A,,. 

Now we shall show, by contradiction, that the orthog- 
onal set of zinc functions is complete spanning the space 
of all band-limited signals. Assume the zinc basis func- 
tions do not form a complete set over the intended space. 
This implies that there exists a 'band-limited signal, :r( t ), 

weighted orthogonal zinc functions. This in  turn implies 
that there exists a nonzero error signal, E ( t ) ,  such that 

x ( r )  = r ( r )  + E ( t ) ,  (13 )  

where 
m m 

- 

that cannot be exactly represented by an infinite sum of (b. 14), it is clear that if C,, = x,, and Of, = +,,, then R ( w )  

+ B,, Cosc ( t  - nT,.). (14)  

To define r ( t )  uniquely, J . ,  { A,, } , and { B,, } need to 
be determined. Given the zinc function frequency char- 
acteristics, it is clear that f , .  should be set to the cutoff 
frequency of x (  r ) .  To determine the remaining parame- 
ters, { A , , }  and { E , , } ,  let us first rewrite (13) as 

t ( r )  = x ( t )  - r ( t ) .  (15) 

We then minimize the mean-squared error defined as 

with respect to { A , ,  } and { B,, } .  Using the orthogonality 
properties, the minimization yields 

m 

S - m  
A,, = 2A. x ( t )  Sinc ( r  - nT,,) dt ,  ( 17) 

and 

B,, = 2~f;. x ( I )  COX ( I  - nT . )  dt. ( IS) S _9, 
Having uniquely determined r ( I ) ,  let us now derive its 

spectrum. Applying the time shift properties of the Fou- 
rier transform to (7), the Fourier transform of z , , ( r )  can 
be written as 

= 0, elsewhere, (19) 

where 

C,, = 0.5T,.(A: + B:)"', (20) 

and 

It follows directly that 
m 

= 0, elsewhere. ( 2 2 )  

In Appendix B, we have derived a Fourier series 
expression for the spectrum of x ( t ) .  Comparing (22) to 
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= X( U ) .  Comparing (17) and (18) to (b.9) and (b. I O ) ,  
we observe that A,, = a,, and B,, = b,,, implying that C,, 
= x,,, O,, = $,,, and finally that R ( w )  = X ( w )  or r ( t >  = 
x ( t ) .  This in turn shows that € ( I )  = 0, contradicting our 
assumption that E ( t )  is nonzero. We therefore conclude 
that the zinc basis functions, given in (9), form a com- 
plete orthogonal set. Thus, any band-limited signal, x (  I ) ,  
can now be represented as in (14), where A, ,  and B,, are 
computed from ( 17) and ( 18), respectively. 

111. ZINC FUNCTION V E R S U S  FOURIER SERIES 

MODELING 

Since the zinc functions form a complete orthogonal set 
and are pulse-like signals, they are inherently well suited 
for modeling the residual. As part of our investigation, 
we shall, in the next two sections, use the modeled LPC 
residual to excite an LPC synthesis filter and produce syn- 
thetic speech. In this section, we shall compare the model 
produced by the zinc functions to a Fourier series model 
and show that, for the same order, the zinc function model 
is superior to the Fourier series model. 

A block diagram of the system used to model the resid- 
ual is shown in Fig. 3. The speech is low-pass filtered and 
sampled at a ratef, = 8 kHz. The digitized speech, s ( n ) ,  
is processed as 20 ms frames and then analyzed using a 
10th-order LPC system. The LPC residual, r ( n ) ,  is up- 
sampled to increase the resolution of the modeling pro- 
cess. The upsampling is performed by using a low-pass 
interpolator with a cutoff frequency equal to f , / 2 .  The 
upsampled residual can be computed via 

sin [ T ( ~ / J  - k ) ]  u + K / 1  

X =  U - K / Z  e ( k )  7 r ( n / J  - k )  ’ 
y ( n )  = 

vJ < II < ( v  + l)J (23)  
where J = T,/7’,, ,  T,  is 1 / f , ,  T,, is the upsampled period, 
and K + 1 is the total number of samples in an interpo- 
lation interval. Here U represents the time index of the 
original sampling period T , .  In our experiments both J 
and K were set at I O .  

Zinc function modeling of y ( n )  is, in essence, an op- 
timization process. The goal is to optimally represent y ( n )  
with a finite-order zinc function model. For a given ~ ( n ) ,  
the zinc function signal model can be written as 

P 

v ; ( n )  = C A,, Sinc [ ~ , , ( n  - t, ,)] 
,I = I 

+ B,, [ T,(I? - t , ) ) ] ,  (24 )  
where P is the model order and { t,) } is a set of orthogonal 
positions. It is necessary to determine A ,  { A , , } ,  { B,,}, 
and { 4, )  in order to completely define p,(n) .  It was 
shown in Section I1 that the zinc function cutoff fre- 
quency, f,., must be equal to the original signal cutoff fre- 
quency. Since the LPC residual is a spectrally flattened 
version of the original speech, its energy is fairly evenly 
spread over the band between 0 Hz a n d f , / 2 ,  implying 
thatf,. should be set at 4 kHz. To optimally determine the 

O....L . Residual 

I Analysis I I 

Fig. 3 .  Experimental system used for zinc function modeling of the LPC 
residual for comparison to Fourier series modeling of the residual. 

remaining parameters, {A , ,  }, { B,, } ,  and { E,, }, we mini- 
mize the mean-squared error between v ( n  ) and yr ( n  ). 
However, if this minimization is carried out with respect 
to {E,,}, nonlinear equations will result. To linearize the 
problem, an exhaustive search is performed to find the 
best { E ,  }. The exhaustive search starts by considering all 
possible orthogonal zinc function positions, { A,, }, within 
the frame. Then, for each A,,, a mean-squared error, L,, ,  
is minimized to determine A,, and B,, .  Here L,, is defined 
as 

1 M - ’  
L,, = - ( y ( m )  - A,, Sine [ ~ , ( m  - ~ , , > ]  M 111 = 0 

- B,, cost [ T J m  - ~ , , ) ] ) >  (25 )  
where M = KT,/T,, .  The resulting equations for A , , ,  B,,, 
and L,, can be written as 

M -  I 

A,, = 2f,T,, c y ( m )  Sinc [ T u ( m  - A,,)], (26)  
,I, = 0 

M -  I 

B,, = 2f,.T,, C y ( m )  COSC [T , (m - A,,)], (27)  
I l l  = 0 

and 
~ M-l 

L,, = - 1 c y 2 ( m )  - 0.5T,.(Ai + B;)”?. (28 )  M Ill  = 0 

Note that (26) and (27) are discrete forms of (17) and 
( I S ) ,  respectively. Given A , , ,  B,, ,  and L,, ,  the optimal 
P-order model is defined by the set of P zinc functions 
corresponding to the P smallest values of L,, in { L,, }. The 
optimality of this technique is verified by noting that due 
to the orthogonality properties, the mean-squared error of 
the P-order model can be written as 

I M - l  P 
1 

L = - c y 2 ( m )  - 0.5T, p = l  c ( A i  + B i ) ” ? .  (29)  
M m = 0  

A voiced residual frame and three zinc function model 
signals are shown in Fig. 4, where the model order is 5 ,  
10, and 15. Observe the ability of the zinc functions to 
closely model the perceptually important pitch pulses with 
a relatively low-order model. To further support this fact, 
a Fourier series model is used as a benchmark for com- 
parison. The same voiced frame is shown in Fig. 5 with 
three Fourier series model signals, again with model order 
5 ,  I O ,  and 15. Note that both basis function models re- 
quire the same number of parameters to describe the sig- 
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Fig. 4. An example of zinc function modeling of  a voiced residual frame 
using the minimum mean-squared error criterion: ( a )  residual frame ( 2 0  
ms duration); (b) Sth-order zinc function model: (c )  10th-order zinc 
function model; (d) 15th-order zinc function model. 

- 
Zinc Function 

Fourier Series ................. 

I I I 

I I 
5 lllbCC 

Fig. S .  An example of Fourier series modeling of a voiced residual frame 
using the minimum mean-squared error criterion: ( a )  residual frame ( 20 
rns duration); (b) Sth-order Fourier series model; ( c )  10th-order Fourier 
series model; (d) 15th-order Fourier series model. 

nal. It is clear from Figs. 4 and 5 that the zinc function 
model is superior to the Fourier series model given the 
same model order. 

Quantitatively, a measure of the goodness of the model 
is the signal-to-noise ratio (SNR) between the original re- 
sidual and the model signal. The SNR of the zinc function 
and the Fourier series modeling methods were computed 
for this voiced frame. It was found that the zinc function 
SNR is 1.9, 2.9, and 3.4 dB higher than the Fourier series 
SNR, for the 5,  10, and 15 order model, respectively. 

To generalize this result, the two modeling methods 
were applied to a database consisting of 16 s of speech 
generated by 50 different speakers: 25 males and 25 fe- 
males. This database is a subset of the Texas Instruments 
database used in [9]. A signal-to-noise ratio comparison 
of the two modeling methods for voiced and unvoiced 
frames is shown in Figs. 6 and 7, respectively. The resid- 
ual SNR values in these figures are averaged over the en- 
tire database. Observe that in the case of voiced frames, 
the zinc function representation is significantly better than 
the Fourier series representation for a given model order. 
For instance, to achieve a 6 dB SNR, a 14th-order zinc 
function model is required compared to a 24th-order 
model for the Fourier series. While the zinc function 

1 0 1  - Zinc Function 

................. 8 t  Fourier Series 

0 10 20 30 

Model Order 

Fig. 7 .  Signal-to-noise ratio (SNR) comparison between zinc function and 
Fourier series modeling of unvoiced LPC residuals from a SO speaker 
database. 

model is significantly better in the voiced case, it is only 
marginally better in the unvoiced case, as Fig. 7 suggests. 
This result makes intuitive sense since both the voiced 
residual and the zinc functions are pulse-like signals while 
the unvoiced residual is similar to white noise. 

IV. THE ZINC EXCITATION LPC (ZELPC) SYSTEM 

Having shown that zinc basis functions are particularly 
good for modeling a voiced LPC residual, the natural ex- 
tension is to test an LPC analysis/synthesis system with 
zinc function excitation. The expectation is that with such 
a system, good quality synthetic speech can be achieved. 

The voiced LPC excitation was modeled with the zinc 
basis functions where the model order was varied from 10 
to 30. The unvoiced LPC residual was represented in  the 
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usual manner, with a white noise source. Voicediun- 
voiced classification was determined with a parallel pro- 
cessing pitch detector [ IO] .  Subjective listening tests in- 
dicate that, regardless of the niodel order. the synthetic 
speech sounded very rough. Increasing the model order 
had a small effect on reducing the roughness. 

The source of this roughness can be explained with the 
aid of Fig. 8. In this figure, a voiced residual frame is 
shown along with a 10th-order zinc function model. Note 
that the voiced frame consists of not only pitch pulses but 
also secondary low-amplitude pulses located between the 
main pitch pulses. Given a fixed model order and the min- 
imum mean-squared error criteria, the zinc function mod- 
eling creates secondary pulses as well as the main pitch 
pulses. In a vocoder-type system, including secondary 
pitch pulses in the LPC excitation introduces the effect of 
a subpitch period within the main pitch period in sections 
of a voiced segment. This subpitch period manifests itself 
as roughness in the synthetic speech. Five experiments 
were designed to study, reduce, and ultimately eliminate 
the sources of roughness in the synthetic speech. 

Experimerit A :  This experiment imposes a restriction to 
exclude the secondary pulses from being modeled. A 
block diagram of the system used in this experiment is 
shown in Fig. 9. A byproduct of the pitch detection pro- 
cess [ 101 is the approximate locations of the main pitch 
pulses. Consequently, if the zinc functions are restricted 
to locations only in the neighborhood of the pitch pulse 
locations, secondary pulses will be excluded. In this ex- 
periment, the above restriction was imposed by defining 
2.5 ms windows centered at the pitch pulse locations. 
Each window is then modeled with a P-order zinc func- 
tion model. 

To limit the number of parameters needed to model a 
frame so that low bit rate speech (4.8-9.6 kbi t /s)  is still 
achievable, the model order P was set to 3 .  A represen- 
tative pitch pulse is shown in Fig. 10 along with the cor- 
responding 3rd-order pulse model that provides a reason- 
ably good fit. It was found that, in most cases, the 3 zinc 
functions are located in adjacent orthogonal positions. 
This makes intuitive sense since pitch pulses usually have 
most of their energies concentrated close to their onset. 
This result allows us to restrict the modeling process per 
window to always give a set of zinc functions that are 
adjacent in positions. By imposing this restriction, the 
number of parameters needed to model the frame is re- 
duced, since only one orthogonal location per window 
needs to be defined. 

At the synthesizer, the zinc voiced excitation is gener- 
ated, scaled to match the frame’s energy, and applied to 
the LPC synthesis filter. Based on this restricted modeling 
scheme, the roughness in the resulting synthetic speech 
was considerably reduced, but not completely eliminated. 
It was hypothesized that the remaining roughness was due 
to I )  large variations in  the distance between the locations 
of adjacent zinc function pitch pulses. and 2) large vari- 
ations in the shapes of adjacent zinc function pitch pulses. 
The next four experiments tested these hypotheses. 

Fig. 8.  An example showing that with a large enough model order and the 
minimum mean-squared error criterion. secondary pulses in a voiced re- 
sidual are included alter the main pitch pulses with the zinc lunction 
modeling process: (a) residual frame (20  ms duration): ( b )  10th-order 
zinc function model. 

Analjsis Stage 

Ll’C Coelficlcnti 

Synthesis Stage 

Fig. 9.  An LPC analysisisynthesis system with zinc function excitation 
where restriction\ arc imposed to eliminate secondary pulses in the zinc 
function modeled residual. 

Fig. I O .  A n  example of a pitch pulse constructed irom a 3rd-order rinc 
function niodel: ( a )  residual pitch pulse ( 5  n i b  duration). ( b )  3rd-order 
zinc function model. 

Experirnerrr B: The purpose of this experiment is to 
study the effect of variations in the distance between ad- 
jacent excitation pulses. Keeping the shapes of the mod- 
eled pulses as found in Experiment A, the zinc function 
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pitch pulse positions are now defined by performing pitch 
period linear interpolation. To determine the position of 
a zinc pitch pulse, a distance is computed by interpolating 
the frame’s pitch distance with the pitch distance of the 
adjacent frame at a location corresponding to the previ- 
ously determined pitch pulse location. This distance is 
then added to the previous pitch pulse position to find the 
position of the present pulse. Energy scaling is performed 
in the same manner as in Experiment A. Subjective lis- 
tening tests indicate that there was a small reduction in  
the roughness of the resulting synthetic speech compared 
to the synthetic speech of Experiment A.  

To analyze this result, we have generated, in  Fig. 11,  
the probability density function of the absolute deviation, 
d;,  of the zinc function pitch pulse position, from the in- 
terpolated values. These statistics were collected using a 
database consisting of six different phonetically balanced 
sentences spoken by six different speakers: 3 males and 3 
females. Each sentence is 2-3 s in duration. Most of the 
deviations are within 0.25 ms as Prob [ d ;  I 0.251 = 

0.67. This deviation is very small and consistent with the 
fact that the pitch varies slightly from period to period 
within a voiced segment. The small reduction in rough- 
ness achieved in this experiment is attributed to the elim- 
ination of large variations between the zinc pulse posi- 
tions and the interpolated values. 

Consequently, instead of transmitting all zinc function 
pitch pulse positions in a frame as Experiment A dictates, 
a pitch period is transmitted along with the zinc pitch pulse 
position deviations that are restricted not to exceed 0.25 
ms. It is important to retain these small deviations since 
they result in a more realistic representation of the pitch 
period variance within a voiced frame, and are vital when 
the speaker has a larger than normal pitch period variance 
in a frame. 

Experiment C: The objective of this experiment is to 
determine the effect of adjacent pitch pulse shape vari- 
ations on the synthetic speech quality. Based on the mod- 
eling procedure of Experiment A ,  these shapes are gen- 
erally different within a frame. To study the effect of these 
variations, we required all pitch pulses within a voiced 
frame to be represented by a single model chosen from 
the voiced frame pitch pulse models obtained from Ex- 
periment A. The positions of the zinc pitch pulses were 
kept the same as determined in Experiment A to sepa- 
rately study the effect of distance and shape variations on 
the synthetic speech. 

To select a single zinc function model for the current 
frame, correlation coefficients are computed between each 
of the zinc function models in the present frame and the 
model pitch pulse of the previous frame. Due to the or- 
thogonality properties, the correlation coefficient between 
two zinc models can be written as 

P 

p E \ 
CL 

1 

0 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

Zinc Function Position Deviation (msec.) 
Fig. I I .  Probability density function of the deviation in the zinc function 

position obtained using the zinc function modeling process from the pm 
sition obtained by performing linear interpolation of the pitch period val- 
ues between two adjacent frames. 

where P is the model order, { 1, { B l , p  1 and { A2.p 1. 
{ B 2 . p }  are the parameters being compared. The zinc 
function model that maximizes this correlation coefficient 
is then chosen as the pitch pulse model for the present 
frame. For future reference, let us denote this maximum 
value by rnmax. 

In this experiment there was no variation in the shape 
of the excitation pulse within a frame and minimal vari- 
ation between adjacent frames. Subjective listening tests 
indicate that the resulting synthetic speech was more nat- 
ural sounding than the synthetic speech in either Experi- 
ment A or B. Some roughness, however, was still aud- 
ible. We can cpnclude that smooth pulse shape transitions 
are necessary but not sufficient to ensure good quality 
synthetic speech. 

Experimenf D: This experiment is a combination of 
Experiments B and C.  The zinc pitch pulse position de- 
viations were restricted to be at most 0.25 ms, and a sin- 
gle pitch pulse model was used per voiced frame. Com- 
pared to synthetic speech from a conventional vocoder, 
the zinc function excitation in this experiment produced 
synthetic speech that preserved speaker identity and was 
natural sounding to a larger extent, although it still exhib- 
ited a little roughness. Subjective listening tests indicate 
that the buzziness heard with most LPC vocoder systems 
is considerably reduced with the zinc function excitation. 

Experimenr E: The objective of this experiment is to 
eliminate the remaining roughness in the synthetic speech 
by concentrating on interframe pitch pulse smoothing. A 
measure of how much pitch pulses change between frames 
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Fig. 12. Probability density function of  the maximuni correlation coctti- 
cient. r,,,,,,. between zinc function pitch pulse rnodcls from two ad-jaccnt 
residual frames. 

is seen in the probabilty density function of the maximum 
correlation, rIllax, shown in Fig. 12. These statistics were 
collected using the six speaker database described above. 
As expected, most of the correlations are very high (e .g . ,  
Prob [ Y,,,,] > 0.6 = 0.65) ,  indicating smooth interframe 
shape transitions. There are, however, a small but signif- 
icant number of unsmooth shape transitions, as the left 
half of Fig. 12 indicates. 

Two approaches were used to smooth these interframe 
pulse shape transitions. First, the parameters of the zinc 
pitch pulse model were linearly interpolated between ad- 
jacent frames. However, this did not guarantee shape 
smoothness and did little to reduce the roughness in the 
synthetic speech. 

Our second approach, however, proved to be consid- 
erably more successful. Here we compared rlllax to a pre- 
defined threshold and used the previous frame pitch pulse 
model when rmax was below this threshold. If the thresh- 
old was set high, the speech sounded buzzy and very close 
to the synthetic speech from a conventional vocoder that 
uses identical pitch pulse shapes over many frames. As 
the threshold was lowered, the speech began to sound less 
buzzy and speaker identity was better defined. Based on 
these results, and extensive listening tests, it was deter- 
mined that a good range of values for the threshold is be- 
tween 0.60 and 0.75. When the threshold is set in this 
region, the synthetic speech had no roughness effects. 
Compared to conventional vocoder speech, this zinc ex- 
citation synthetic speech sounded less buzzy and the 
speaker identity was better defined. 

V.  THE ZINC MULTIPULSE LPC (ZMPLPC) SYSTEM 
The block diagram of the ZMPLPC system is depicted 

in Fig. 13. The ZMPLPC system is an extension of the 
conventional MPLPC system [8]. Instead of using ideal 
impulses, the ZMPLPC system uses the zinc basis func- 
tions in constructing the LPC excitation. Unlike a con- 

I - Error' 

Analysis Stage 

LI'C Coefkirnts 

Multi-Pulse 
Zinc 

Parameters U Generator 

Synthesis Stage 

Fig. 13. The zinc multipulse LPC system (ZMPLPC). a multipulse LPC 
speech encoding-decoding system where zinc functions are used instcad 
of the conventional ideal impulses to gencrate the synthetic residual. 

ventional MPLPC, the ZMPLPC system has the ability 
to adjust the zinc pulse shape to optimally represent the 
pulses in the LPC excitation. Except for the pulse models 
used to construct the LPC excitation, the ZMPLPC is 
identical to the well-known MPLPC system. 

At each stage of the analysis-by-synthesis process, the 
noise weighted error is minimized to obtain the parame- 
ters of a new zinc function to be added to the excitation 
of the previous stage. The kth stage error signal, P c L ' (  n ) ,  
can be expressed as 

I 

C ( ' ) ( n )  = s ~ ( H )  - ,Z ~ , ( n )  * A ( / ? ) ,  (31)  
I = I  

where 

z , ( n )  = A; Sinc ( 1 1  - A,) + Bj Cosc ( n  - A,). (32)  
Here so( n )  is the original speech signal with the previous 
frame's synthesis filter contribution removed, { A, } are 
the zinc function locations, and h ( n )  is the impulse re- 
sponse of the synthesis filter H ( z ) .  The zinc function cut- 
off frequency A., embedded in Sinc and Cosc, is again set 
to 4 kHz ( & / 2 ) .  

The ( k  + 1 )st zinc function parameters ( A k +  I ,  BA + I ,  

and A k + l )  are determined by minimizing the noise 
weighted mean-squared error. The noise weighted error 
can be expressed as 

i?:+ I ) ( I I )  = [ P ' " ( n )  * w ( n ) ]  - [ZI+ , ( n )  * f ( l Z ) ] ,  

( 3 3 )  
where w ( n )  is the impulse response of the perceptual 
noise weighting filter W ( z ) ,  and 

f(n) = h ( n )  * W ( . ) .  (34) 
The perceptual noise weighting filter used in the ZMPLPC 
system is identical to the noise weighting filter used in a 



conventional MPLPC system, that is, MPLPC system [ 121. Intuitively. this is not a surprising 
result since the Sinc ( 1 1 )  function. w i t h i  set to&/?.  de- 
generates into a discrete impulse. 

Similar to a conventional MPLPC system. the ( X  + 1 )st 
( 3 5 )  

where A (:)is the  pc polynomial. and is a number less 
than uni ty  (typically 0.8 for an 8 kHz sampling rate 181 1, 

~ i ~ i ~ i ~ i ~ ~  the mean-squared noise weighted error, 
;(, + I )  (,, 1, with respect to A, + I and B, + I ,  and s impl i fy ing  
yields 

zinc location. XI, ,. is determined by computing A, I and 
B k + l  for every possible location within the frame and then 
setting A L L l  to the location that results in  a minimum 
mean-squared noise weighted error. Since the zinc basis 
functions can model any band-limited signal exactly. i t  is 
necessary to perform this exhaustive search procedure 

I, 

and 

(37 )  

where 

R,,, = C ( ; ( , ) ( R I  * w ( r ? ) ) ( ~ i n c  ( 1 2  - A,,,) * f ( n ) ) ,  
N -  I 

11 = 0 

(38 )  
.v- I 

R(,,. = Z: ( g ( ” ( t ~ )  * \ t ? ( t~) ) (Cosc  ( t i  - A,+,) * , f ( ~ ) ) ,  
11 = 0 

(39 )  

R ~ . ,  = C (Sinc ( n  - A,,,) *f(rz))(cosc ( n  - A,,,) 

* f ( n , ) ,  (40) 

(41)  

N -  I 

11 = 0 

N -  I  

R,,  = c (sinc ( n  - A,+,> * f ( t i ) ) ’ .  
11 = 0 

N -  I 

( 4 2 )  
R,.,. = C (Cosc (n - A n + l )  * f ( u ) ) ’ ,  

and N is the total number of samples used in the mini- 
mization. Equations (36) and (37) can be further simpli- 
fied by noting that the term R(., is a correlation between 
two output signals of the same linear system, , f ( n ) .  The 
corresponding input signals, Sinc ( n  - A k + l  ) and Cosc 
( n  - A,+ I ) are even and odd time functions, respectively, 
that have been equally delayed. In this case, it can be 
shown [ 1 I ]  that the resulting output signals are orthogo- 
nal. This implies that the correlation term R(., is identi- 
cally equal to zero. 

11 = 0 

As a result, (36) and (37) simplify to 

&+I  = R,,,/R,,. (43) 

and 

& + I  = R,, , /R, , .  (44) 

Note that the expression for the parameter A , ,  , is identi- 
cal to the expression for the impulse amplitude in an 

only on the frame locations that satisfy the Linc function 
orthogonality criteria. I t  was shown in Section I1 that the 
zinc orthogonality criteria dictates that the zinc functions 
be separated by nT, . where r i  is an integer other than zero. 
Since T, is set t o  2 T,,  the exhaustive search need only be 
performed at alternate sample points, compared to ever) 
sample point for a conventional MPLPC system. This is 
a very important aspect of the ZMPLPC system since the 
amount of information needed to describe the p l s c  lo- 
crztioris in the multipulse excitation is ctfectively reduced 
by a factor of two in comparison t o  a conventional 
MPLPC system. There are, however. two amplitude pa- 
rameters, A ,  and B,, for every zinc pulse. Nonetheless, 
we have found that, given a fixed segmental signal-to- 
noise ratio between the original speech and the synthetic 
speech, the ZMPLPC system is more efficient. in terms 
of the amount of information that necds to be transmitted 
to the synthesizer. than a conventional MPLPC system. 

Another point to note about the ZMPLPC system is that 
its computational complexity is very close to the compu- 
tational complexity of the well-known MPLPC system. 
The fact that only one-half of the frame locations need to 
be searched, as described above, offsets the increase in  
computations introduced by having t o  compute two cor- 
relation values f(43) and (44)) rather than only one value 
as in the MPLPC case. 

An example of the ZMPLPC excitation is shown in Fig. 
14. The top signal is a typical voiced residual signal. while 
the bottom two signals are the MPLPC and ZMPLPC ex- 
citations. respectively. Note that both types of excitations 
use the same number of pulses. Note also that the residual 
signal exhibits the sharp negativeipositive swings usually 
found in an LPC voiced residual. The inherent flexibility 
of the zinc pulse in efticiently modeling these types of 
negativeipositive swings makes the zinc basis functions 
attractive in a multipulse system. 

As shown in Fig. 14. the MPLPC excitation frequently 
requires two adjacent pulses to reconstruct a pitch pulse 
(a combination known as a “doublet“). The ZMPLPC 
system models each pitch pulse with one zinc pulse. and 
uses the second pulse to model the secondary excitation 
occurring between pitch pulses. Unlike the excitation in  
a conventional vocoder, i t  is advantageous in a multipulse 
excitation to model the secondary excitation because this 
secondary excitation can only reduce the error between 
the original speech and the synthetic speech. Observe also 
that the zinc pulse shape varies slowly in time. indicative 
of its ability to model short term phase information. AI- 
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1 I I 

Fig. 14. A exaniple comparing the conventional multipulse excitation and 
the zinc multipulse excitation: (a )  original residual (40 ins duration): (b)  
MPLPC excitation: (c) ZMPLPC excitation. 

though a zinc pulse requires transmission of two ampli- 
tude terms and one position to be uniquely reconstructed, 
the shapes of successive zinc pulses are highly correlated, 
as shown in Fig. 14, and can therefore be efficiently quan- 
tized. 

A SO-speaker database was constructed to compare per- 
formance between conventional MPLPC and ZMPLPC. 
Each sample utterance in the database consisted of a short 
voiced segment excised from a Harvard phonetically bal- 
anced [ 131 sentence. The original database is described in 
191 and represents a diverse population of speakers. No 
unvoiced or silent frames were included in the database 
since no significant improvements over a conventional 
MPLPC system is expected. We should note that the 
ZMPLPC excitation is an efficient extension to the con- 
ventional MPLPC excitation. An objective comparison is 
seen from the segmental signal-to-noise ratio (SSNR) of 
each system. Subjective listening tests were subsequently 
used to verify these results. 

Curves plotted in Fig. 15 provide an SSNR comparison 
between the two systems. In this figure, the SSNR is plot- 
ted versus the number of pulses per frame ( 5  ms dura- 
tion). The SSNR values in Fig. 1.5 represent a per-frame 
SSNR average over the entire database rather than an 
average of the per utterance SSNR values. The ZMPLPC 
system results in approximately a 4 dB improvement over 
MPLPC, given the same number of pulses. Subjective lis- 
tening tests also indicate a definite preference for the 
ZMPLPC system. 

The comparative performance of these two systems ul- 
timately must be measured at similar data rates. If the 
MPLPC system uses seven pulses every 5 ms, it must 
transmit seven pulse amplitudes and seven pulse posi- 
tions. Comparing SSNR, this .system will be equivalent 
to a ZMPLPC system using four zinc pulses every 5 ms. 
The ZMPLPC system in this case would require eight 
pulse amplitudes and four pulse positions to describe the 
four zinc pulses. These pulse positions, however, have 
half the time resolution of the MPLPC positions, due to 
the orthogonal property of the zinc function. Although no 
complete coding scheme with bit allocations was imple- 
mented, bit rates are estimated in the range of 9.6 kbits/s 

30 r- ZMPLPC 

I I I I I 

0 2 4 6 8 10 

Number Of Pulses Per Frame 

Fig. 15. Segmental signal-to-noise ratio (SSNR) comparison between the 
zinc multipulse system and a conventional multipulse system over a 50 
sentence database generated by SO different speakers. 

(to a maximum of 16 kbits/s) .  Based on required ampli- 
tudes and positions, our experiments indicate that with 
simple coding techniques, approximately a 25 percent re- 
duction in bit rate for the ZMPLPC system over conven- 
tional MPLPC can be achieved, and the same SSNR 
maintained. Further reductions in bit rate are possible by 
using the correlation in adjacent zinc pulse shapes. 

Throughout this and the previous sections, informal 
subjective listening tests were performed by 2-3 judges 
to evaluate the resulting synthetic speech. Although our 
results are very promising, a detailed subjective listening 
test must be conducted to completely evaluate ZELPC and 
ZMPLPC in the voice coding field. 

VI. CONCLUSIONS 

This paper has presented a new model for the LPC ex- 
citation. The model excitation signal is composed of a 
complete set of orthogonal functions called zinc func- 
tions. The zinc basis functions were shown to have prop- 
erties well suited for efficient modeling of the LPC resid- 
ual. The zinc function excitation model was used in two 
low bit rate speech coding systems: ZELPC and 
ZMPLPC. Subjective listening tests indicate that the 
ZELPC system produced synthetic speech that was less 
buzzy and preserved speaker identity to a larger extent 
when compared to conventional vocoder synthetic speech. 
The ZMPLPC system is shown to be more efficient with 
respect to the amount of information transmitted to the 
synthesizer in comparison to a conventional MPLPC sys- 
tem. This savings in transmitted information is achieved 
at a minimal increase in the number of computations. 

Future research efforts are directed toward optimally 
quantizing the ZMPLPC parameters. An additional re- 
duction in transmitted information can be achieved by in- 
corporating the correlation between adjacent pulses in the 
zinc multipulse excitation. 
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APPENDIX A 

CRITERIA 
DERIVATION O F  THE ZINC FUNCTION ORTHOGONALITY 

The zinc function orthogonality criteria involves find- 
ing values for X such that the following three relations are 
satisfied. 

Relation I :  j T m  Sinc ( t )  Sinc ( t  - X )  dt = 0.  
Let 

t j l ( r )  = Sinc ( t ) ,  (a .1)  

(a .2)  

and 

zjZ(t) = Sinc ( t  - A ) .  

Using Parseval’s theorem, we can write Relation I as 
4 P m  
1 
- 1 V:(w)  V 2 ( w )  dw = 0, (a.3) 
2a  - m  

where V , ( w )  and V 2 ( w )  are the Fourier transform of z l l ( t )  
and U,(  t ) ,  respectively, and V*( w )  indicates the complex 
conjugate of V ( w ) .  Note that V l ( w )  and V 2 ( w )  can be 
written as 

Vl(W> = a, I W I  < 2a-9 

= 0, / w I  > 2T61 (a .4)  

101 < 2aL,  

and 

VZ( 0 )  = 7 r - j w h  1 

= 0,  (01 > 2.rrf,. (a .5)  

Substituting (a.4) and (a.5) into (a.3), we obtain 
R 2 T f  

Integrating (a.6) and simplifying, we obtain 

(a.7) 
a .  

~ sin (2x1  X )  = 0. 
h 

Equation (a.7) implies 

2n--.X = na,  (a .8)  

X = OSnT, ,  (a.9) 

where n is an integer other than zero. This requires 

to satisfy Relation I.  
Relation 11: j Y m  COSC ( t )  Cosc ( t  - A )  dt = 0. 
Let 

w l ( t )  = Cosc ( t ) ,  

W,(t) = Cosc ( t  - A ) .  

(a. lo )  

and 

(a .11)  

Using Parseval’s theorem, we can write Relation I1 as 
1 r m  

where W,( w ) and W,( w ) are the Fourier transform of 
w l ( t )  and w2(t), respectively. Note that ” , ( U )  and W 2 ( o )  
can be written as 

W , ( w )  = ae””, 

- - R e - J 8 / 2  

-2aJ < w < 0 ,  

0 < w < 2aL,  

= 0, ( U (  > 271-A. (a.13) 

and 

, -27rL < w < 0,  

0 < w < 27r i ,  

- / ( - O S n + o X )  W 2 ( w )  = 7re 

, - - ae-J(O S l r  + W X )  

= 0 ,  ( W I  > 2r.A. (a .  14) 

Substituting (a. 13) and (a. 14) into (a. 12), we obtain 

Integrating (a. 15) and simplifying, we get 

(a .  16) a .  
- sin (27rA.X) = 0. X 

Equation (a. 16) implies 

271-L.h = n a ,  ( a .  17) 

where n is an integer other than zero. This requires 

X = 0.5nTC, (a.18) 

to satisfy Relation 11. 
Relation 111: SYm Sinc ( t )  Cosc ( t  - A )  dt = 0. 
Using Parseval’s theorem and the notation defined 

above, we can write Relation I11 as 

V : ( w )  W Z ( w )  dw = 0.  (a.19) 

Substituting (a.4) and (a. 14) into (a. 19), we obtain 

(a .20)  

Integrating (a.20) and simplifying, we get 

27r . 
-- X sin’ ( .-.A) = 0. (a.21) 

Equation (a.21) implies 

where n is an integer. This requires 

h = nT,., (a.23) 
i 3 ~ : ( w )  ~ ~ ( w )  dw = 0, (a.12) 
2~ - m  to satisfy Relation 111. 
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APPENDIX B 

T H ~  S P ~ C T K U M  OF A BANI)-LIMII-ED SIGNAL 
DERIVATION OF A FOURIER SERIES EXPRESSION FOR 

I n  general, we can write the Fourier transform of any 
signal, x (  t ) ,  as 

X (  w )  = I X (  w )  I e / o ( ( a ) .  ( b . 1 )  

Due to the symmetry properties of X(  U )  [ i . e . ,  1 X(  a) 1 
- I X (  -a)[, and O, (w)  = -O,( - U ) ] ,  and the fact that 
X (  w )  is assumed band-limited with cutoff frequency f ; . ,  
we need only consider X ( w )  for w between 0 and 27rL. 
The Fourier series expansion for X (  w )  between 0 and 27rf;. 
can be written as 

- 

m 

x(w) : xJle-/a~~7, 0 < w < ~ T L . ,  (b.2) 

where T, = 1/L.. The Fourier series coefficient in (b.2) 
can be evaluated as 

J I :  -m 

?nt, 

x = ~ s x(w)e’ . ” ’J17’  dw, 
27rf; 0 

where 

m 

Combining (b.3) and (b.4). we obtain 

m 

.( t )e-J“ ’e / “ ”T< dt dw,  
1 

-m 

that can be rewritten as 

Evaluating the inner integral, we find that 

I 1 [ l  - cos [27rf,.(t - nT,.)] 
- - - 
.i 1 2 ~ ~ ( r  - 

sin [ 2 7 r ~  ( t  - n ~ ,  ) ]  + 
27r i ( t  - nT, )  ‘ 

The final form of (b.3) can be expressed as 

XI, = 0.5T (al l  - . jPJ IL  

where 

dt. 

and 

( b .  10) 

In polar form, we obtain 

x,, = x Jle-”ll, (b.11) 

where 

(b .  12) 
7 112 

X n  = 0.57-,(af, + P,) 3 

and 

$17 = tan-’ ( @ I J / a J l ) ‘  (b.13) 

Finally, substituting (b. 11)-(b. 13) into (b.2), and apply- 
ing the symmetry properties of X (  U ) ,  we obtain 

m 

x ( ~ )  = X J , e - ~ 6 ~ e - ~ w ~ ~ T c  , 0 < w < 2 a f , ,  . .  
, I =  -m 

m 

- - C X n e J 6 , e - ~ ~ ~ i ~  -27rfc < w < 0, 
J J =  -m 

= 0, elsewhere. (b .  14 ) 
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