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Design and Implementation of a Robust Pitch 
Detector Based on a Parallel 

Processing Technique 

Abstract-The design and implementation of a parallel processing 
based pitch detector is presented. Pitch information is extracted by 
performing pitch detection on four different waveforms derived from 
the speech signal. A “pitch voter” is then used to combine pitch infor- 
mation from the four pitch detection processes to determine a final 
pitch estimate. The performance of this pitch detector is evaluated on 
a large database and compared to other well-known pitch detection 
algorithms. This parallel processing pitch detector was implemented in 
real time on a TMS32020 fixed-point digital signal processor as part of 
a 2.4 kbit/s vocoder. A performance comparison of the real-time fixed- 
point implementation and a computer simulation are also given. Our 
results show that the pitch detector performance is maintained in the 
real-time implementation. This can mainly be attributed to the fact 
that the majority of the algorithm computations are integer arithmetic 
and logic-type operations. 

I. INTRODUCTION 
ILE many pitch detection methods have been pro- w posed [ 11-[ 121, accurate and consistent pitch detec- 

tion remains a very difficult problem. Anomalous or ape- 
riodic behavior of the vocal tract vibrations of the speaker 
is the main reason why many pitch detectors fail on some 
occasions in determining the correct pitch. This kind of 
anomalous behavior often occurs at the transition regions 
between voiced and unvoiced segments of speech where 
pitch periods are irregular or pitch pulses vary consider- 
ably in amplitude. One might even argue that the vocoder 
model of the excitation signal as being either periodic or 
random noise is inadequate and a more realistic model is 
needed. 

In this paper, a pitch detector based on a parallel pro- 
cessing approach is presented. Four individual pitch de- 
tectors are used to extract pitch information from four dif- 
ferent signals. The outputs of the four pitch detectors are 
then combined using a pitch voter to determine a final 
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pitch estimate. Performance analysis, on a large database 
that has been carefully cross balanced for the sex and age 
of the speaker, indicates reliable and accurate pitch de- 
tection. In addition, there is no performance degradation 
when the pitch detector is implemented in real time on a 
fixed-point processor. This can be attributed to the fact 
that the majority of the algorithm computations are inte- 
ger arithmetic and logic-type operations. 

The organization of this paper is as follows. In the next 
section, a detailed description of the pitch detector algo- 
rithm is given. In Section 111, the pitch detector parameter 
design is presented. Performance analysis and experimen- 
tal results are given in Section IV. Finally, in Section V, 
we give a general overview of a real-time implementation 
of the algorithm using a single TMS32020 digital signal 
processor. 

11. THE PARALLEL PROCESSING PITCH DETECTOR 
ALGORITHM 

An overall block diagram of the pitch detector is given 
in Fig. 1, where low-pass filtered speech signal is sampled 
at 8 kHz and quantized using a 16 bit linear quantizer. 
The digitized speech x(  n )  is processed as 20 ms frames, 
and a tenth-order linear predictive coding (LPC) analyzer 
is used to generate the LPC error signal e (  n) .  Since pitch 
information is present in both the original speech signal 
and the LPC error signal, pitch detection is performed 
separately on each one of these signals. Typically, peri- 
odicity that appears in the original speech waveform also 
occurs in the LPC residual, implying some redundancy 
during definitive voiced frames. However, several cases 
demonstrate the need for pitch detection with both types 
of waveforms. 

An example is shown in Fig. 2 where a particular for- 
mant structure causes the periodicity in the voiced speech 
waveform to be obscured and hard to detect [ 131. Since 
the LPC residual represents the speech waveform with the 
formant structure removed, voiced speech periodicity can 
be detected with little difficulty in the residual. A differ- 
ent case arises when the residual waveform fails to show 
clear periodicity in voiced frames, as shown in Fig. 3 [ 131. 
This occurs when the fundamental frequency of the ex- 
citation falls under a voiced speech formant. As a result, 
the excitation information normally found in the residual 
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Fig. I .  Block diagram of the parallel processing pitch detector (PPPD). 
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Fig. 2. An example where the pitch period is easily found in the residual, 
but not in the speech waveform. The upper trace is the input speech and 
the lower trace is the LPC residual waveform. 
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Fig. 3.  An example where the pitch period is easily found in the speech 

waveform, but not in the residual. The upper trace is the input speech 
and the lower trace is the LPC residual waveform. 

is removed by LPC inverse filtering, causing the residual 
to look noisy while the original speech waveform appears 
to be clearly periodic. 

Before performing pitch detection on x ( n  ) and e ( n  ), 
each signal is split into its positive-going portion and its 
negative-going portion. The reason for clipping the wave- 
form in this fashion is that the composite waveform might 
not show clear periodicity during a voiced frame while 
one of the clipped waveforms exhibits periodicity that can 
be easily detected. Let us denote the positive-going and 
the negative-going speech waveforms by y , ( n )  and Y b (  n) ,  
respectively. Further, let us denote the positive-going and 
the negative-going residual waveforms by y,(  n )  and 
yd ( n ), respectively. 

Since the speech is processed as frames of 20 ms in 
duration y , ( n ) ,  y b ( n ) ,  y , ( n ) ,  and y d ( n )  consist of 160 

sample points each. Four pitch detectors operate, in par- 
allel, on y , ( n ) ,  y b ( n ) ,  y , ( n ) ,  and yd ( n ) .  These individ- 
ual pitch detectors have identical structure, and differ only 
in the values of the control parameters (described in Sec- 
tions I11 and IV). The pitch voter combines the four pitch 
distance estimates T , ( i  - l ) ,  T b ( i  - l ) ,  T , ( i  - l ) ,  y d  
Td ( i  - 1 ) to produce a final pitch distance estimate P ( i  
- 2 )  where two frames of delay are needed to ensure 
smooth pitch tracking. 

The Individual Pitch Detector 
The operation of the individual pitch detector starts by 

identifying a set of samples (or pulses) over a frame on 
which the periodicity check is to be performed. To define 
this set of pulses, the pitch detector first finds the global 
maximum amplitude MO and its location Do in the frame. 
Any pulse selected from this point on must satisfy three 
conditions. 

First, the next pulse selected must be a local maxima, 
excluding all pulses that have already been picked or 
eliminated. This condition is applied because pitch pulses 
usually have higher amplitudes than other samples in a 
frame. Let us denote the local maxima by MJ . 

Second, any pulse satisfying the first condition should 
have an amplitude greater than or equal to a certain per- 
centage of the global maximum. That is, 

MJ gMo, (1) 

where g is a threshold amplitude percentage and will be 
discussed in detail in the next section. 

Third, any pulse satisfying both of the above conditions 
must be separated by at least 2.25 ms ( 18 sample periods) 
from all the pulses that have already been located. This 
condition is included because we assume that the largest 
pitch frequency usually encountered in human speech is 
400 Hz, corresponding to a pitch period of 2.55 ms (20 
sample periods), and allow a 10 percent tolerance. 

The pitch detector can identify at most nine pulses over 
one frame. These pulses are called candidate pulses. The 
amplitudes { MJ } and locations { DJ } of these candidate 
pulses are used to define a distance that represents the 
smallest distance for which a subset of candidate pulses 
is periodic. This distance is determined recursively by 
considering the distance from the frame global maximum 
MO to the closest adjacent candidate pulse. This distance 
is called a candidate distance d ,  and is given by 

d ,  = ID0 - DJI. (2) 
If such a subset of maxima in the frame is not separated 
by this distance plus or minus a breathing threshold B (to 
be discussed in the next section), then this candidate dis- 
tance is discarded, and the process begins again with the 
next closest adjacent candidate pulse. 

If a subset of candidate pulses separated by d, plus or 
minus B is found, then the amplitude of the candidate 
pulse that is adjacent to MO must also pass an interpolation 
amplitude test to ensure a smooth amplitude transition. A 
smooth amplitude transition is desirable since the enve- 



SUKKAR et (11. : DESIGN AND IMPLEMENTATION OF ROBUST PITCH DETECTOR 

lope of most voiced speech segments exhibits no sudden 
jumps. 

This amplitude test performs linear interpolation be- 
tween MO and each of the other candidate pulses Mi, j > 
0, and requires that the amplitude of the candidate pulses 
in between MO and Mj be at least q percent of these inter- 
polated values. The interpolation amplitude threshold q 
percent will also be discussed in the next section. To clar- 
ify by example, consider the candidate pulses shown in 
Fig. 4. For d, to be a valid candidate distance, 

and 

where d, = I Do - D1 1 > 2.25 ms. As noted previously, 
we must also guarantee that 

for j = 1, 2, 3, 4, 5. (7)  

If any of the above relations is not met, then the subset 
of candidates is discarded and the process of defining a 
new d, begins again with the next adjacent candidate 
pulse. If a valid d, is found, a pitch distance is computed 
as the average distance between adjacent pulses in the set 
of periodic candidate pulses (i.e., the set of candidate 
pulses corresponding to the valid d,). This pitch distance 
is denoted as T( i ), and is then compared to T( i - 1 ) via 
a pitch consistency test. If no valid d, is found, T(i) is 
set to zero, indicating an unvoiced frame. 

The pitch consistency test, as the name indicates, en- 
sures pitch consistency over two adjacent voiced frames. 
It also checks and corrects pitch doubling errors made 
when defining a candidate distance. 

This test starts by checking if T(  i ) and T( i - 1 ) are 
close to within a pitch threshold A (to be discussed in the 
next section). Consequently, if 

Mi > gM,, 

(T(i - 1) - T(i)( I A ,  

IT(i  - 1)  - T(i)I > A ,  

(8) 
then T(i) is a good estimate of the pitch distance and 
need not be modified. However, if 

(9) 
then we must perform the pitch doubling test. 

The pitch doubling test checks if T( i - 1 ) and twice 
T(  i ) are close to within the pitch threshold A. Therefore, 
if 

(T(i - 1) - 2T(i) l  5 A, (10) 
then we set T(  i ) to be equal to T( i - 1). This, in effect, 
corrects any pitch doubling error that might occur when 
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Fig. 4. An example of a subset of candidate pulses when the amplitude 
interpolation test is applied. 

defining a candidate distance. However, if both of the 
above tests fail, that is, if 

IT(i  - 1) - T(i)I > A 

IT(i - 1) - 2 ~ ( i ) (  > A, 

(11) 

(12) 

and 

then we set T(  i ) to zero, implying that frame i cannot be 
voiced since its initial estimated pitch distance is not con- 
sistent with the pitch distance estimate for frame i - 1. 

Since human speech usually does not produce more than 
one transition between voiced and unvoiced segments 
within 40 ms, the individual pitch detector checks and 
eliminates all voiced-unvoiced-voiced (VUV) and un- 
voiced-voiced-unvoiced (UVU) sequences. In the former 
case, T( i - 1 ) is set to the arithmetic average of T(  i ) 
and T(i - 2). In the latter case, the pitch distance esti- 
mate is set to zero. 

The Pitch Voter 
A block diagram of the pitch voter is shown in Fig. 5 

and a complete description is found in [ 131. In this paper, 
a brief overview is given. The pitch voter consists of two 
main building blocks: the discriminant analyzer to deter- 
mine voicing, and the final pitch value estimator to deter- 
mine a final pitch value. The voicing classification is ob- 
tained using a discriminant analysis approach where a 
weighted sum of several parameters is computed. These 
parameters are chosen based on their ability to discrimi- 
nate between voiced and unvoiced frames. They include 
three parameters representing the number of nonzero pitch 
estimates determined by the four individual detectors for 
the present and the two adjacent frames. They also in- 
clude the first four reflection coefficients, the log of the 
speech power, and the log of the LPC gain defined as the 
speech power divided by the residual power. The opti- 
mum weights are determined using a training set of speech 
where the correct voicing is known. 

The voicedhnvoiced classification, along with the pitch 
estimates from the four individual detectors, are used by 
the final pitch value estimator. If the discriminant analysis 
determines the frame is unvoiced, ( i  - 2)  is set to zero. 
Otherwise, the frame is voiced and the final pitch estimate 
is set to the median value of 13 pitch estimates. These 13 
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Fig. 5 .  A functional block diagram of the pitch voter. 

pitch estimates come from the four individual detectors 
for the present and both adjacent frames and the final pitch 
estimate for the most recent voiced frame. 

111. PARALLEL PROCESSING PITCH DETECTOR 
PARAMETER DESIGN 

The Amplitude Test Threshold ' 'g 
The purpose of this threshold is to prevent any nonpitch 

pulses from taking part in the periodicity check performed 
by the distance detector. In most voiced frames, the am- 
plitudes of the pitch pulses show a small variance. (This 
fact will be verified shortly when we examine a pitch pulse 
amplitude histogram.) Thus, it would be reasonable to 
constrain any possible pitch pulse to have an amplitude 
greater than or equal to a certain percentage of the maxi- 
mum pitch pulse amplitude in a frame. We have used the 
amplitude threshold test 

( 1 3 )  
where g is the amplitude threshold percentage, Mj is the 
amplitude of any possible pitch pulse chosen by the pitch 
detector, and MO is the maximum pulse amplitude in the 
frame. 

To complete this part of the pitch detector design, we 
specify an upper and lower bound for a region of accept- 
able values of g. Statistics have been collected for a nor- 
malized amplitude variable g' defined as 

where Mj" is a valid candidate pulse amplitude in a voiced 
frame whose maximum amplitude candidate pulse is MO. 
Statistics were collected from 60 sentences spoken by six 
different speakers, three males and three females. Each 
sentence is about 2-3 s in duration. The statistics only 
include data belonging to frames with a nonzero final pitch 
value where more than two individual pitch detectors de- 
termined a nonzero pitch estimate for that frame. In other 
words, the statistics include data that have a high proba- 
bility of belonging to voiced frames. 

0.2 - 
1 

OI = 

0.1 - 

0.0 
0.0 0.5 

g r =  M;/M~ 

Fig. 6. Probability density function, in histogram form, of the normalized 
amplitude variable g' 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 

g '  = t.19~~ J 
Fig. 7 .  Cumulative probability distribution function of the normalized am- 

plitude variable g'. 

The probability density function (in histogram form) 
and the resulting cumulative distribution function for g' 
are shown in Figs. 6 and 7, respectively, where the latter 
curve is plotted only for 0 I g' I 0.6. Fig. 6 clearly 
shows that most of the pitch pulses are close in amplitude 
to MO. For example, 69 percent of all the pitch pulses are 
at least 70 percent of MO. However, there are some pitch 
pulse amplitudes that are not close to MO. These pulses 
are either true pitch pulses, for example, at the end of 
voiced words or they are nonpitch pulses, incorrectly in- 
cluded by the individual pitch detector in the set of valid 
candidate pulses. 

Before drawing any further conclusions, we note that 
the shape of the plot in Fig. 6 is similar to a translated 
Rayleigh probability density function curve. A good fit 
for the probability density plot of Fig. 6 is the Rayleigh- 
like probability density function shown in Fig. 8. The 



SUKKAR et al.: DESIGN AND IMPLEMENTATION OF ROBUST PITCH DETECTOR 445 

0.0 a 
0.00 0.50 1.05 

g‘ = MvlU i o  
Fig. 8 .  A Rayleigh-like probability density function approximating the 

histogram of the normalized amplitude variable g’. 

equation of this curve is 

(1.05 - g ’ )  h’) = a 2  exp (-[(1.05 - g’)2/2a2]} 

* ~ ( 1 . 0 5  - g ’ ) ,  (15) 
where U (x) is the unit step function and a! is directly pro- 
portional to the standard deviation of g’ . It was found that 
a = 0.2125 for this speech database. The expected value 
of the above probability density function [14], [15] was 
found to be 0.72 and the standard deviation [14], [15] 
computed to be 0.14. 

If we set an upper bound on the amplitude threshold g 
to be three standard deviations away from the expected 
value of g ’ ,  then g < 0.3. The Rayleigh-like probability 
density function curve then yields P [ g ‘  < 0.301 = 
0.002. This probability includes a few valid pitch pulses, 
but it accounts mostly for nonpitch pulses that passed the 
periodicity check. 

A lower bound should also be determined because if g 
is set too low, nonpitch pulses might pass the amplitude 
test, resulting in nonreliable operation of the pitch detec- 
tor. If we set a lower bound on g to be four standard de- 
viations away from the expected value of g’,  then g > 
0.16. The Rayleigh-like probability density function curve 
then yields P[ g < 0.161 = 0.001 that accounts for non- 
pitch pulses that passed the periodicity check. 

Considering the cumulative distribution function of g‘ 
shown in Fig. 7, we can observe three distinct regions 
defined by two linear asymptotes (the dotted lines in this 
figure). One region is 0.525 I g’ I 1 .O where the curve 
rises sharply, indicating that candidate pulses with an am- 
plitude greater than 0.525M0 are much more likely to be 
pitch pulses than nonpitch pulses. Another region is 0 I 
g’ I 0.175 where we would expect just a few pulses with 
amplitudes less than 0. 175M0 to be true pitch pulses. The 
last region is 0.175 < g’ < 0.525 which represents a 
transition region and indicates a range of values that g’ 

can possibly take. This experimental result is consistent 
with the upper and lower bounds given above, implying 
that g should be set between 0.175 and 0.525 to ensure a 
reliable pitch detector operation. The performance anal- 
ysis given in the next section supports these results and 
gives an optimal value for g. 

The Amplitude Interpolation Threshold ‘ ‘q ’ I  

A range of values for the amplitude interpolation 
threshold 4 can be obtained using a statistical approach 
also. The derivation has been omitted, but a complete dis- 
cussion of the design technique for q is given in [ 141. A 
good range for the amplitude interpolation threshold was 
found to be 0.72 < q < 0.78. 

The Breathing Threshold ‘ ‘B * ’  

It was noted in the previous section that if the pitch 
detector determines a nonzero value for the pitch dis- 
tance, then there exists a subset of candidate pulses that 
are separated by a distance d,  plus or minus a breathing 
threshold B. Intuitively, we can say that if a voiced frame 
has a large pitch distance, we would expect a larger 
breathing allowance than in the case when a voiced frame 
has a small pitch distance. That is, the breathing allow- 
ance should be directly proportional to the pitch distance. 

Statistical results for the breathing parameter B are 
given in Table I. The values in the fourth column of Table 
I are plotted as a function of the pitch distance estimate 
in Fig. 9. The equation of the dashed line in Fig. 9, rep- 
resenting a least squares linear fit to E ( B )  + 4uB data 
points, is 

b ( T )  = 0.345 + O.O84T, (16) 
where Tis the pitch distance. Note that if (16) is used to 
compute the breathing threshold B,  then the frame’s pitch 
distance is required. Obviously, this is an unrealistic re- 
quirement. Recall, however, that the breathing threshold 
B is used to test if a set of candidate pulses is periodic 
with the period equal to d,  from (2). Therefore, d,  can be 
used instead of the frame’s final pitch distance in (16) to 
compute B.  Experimental results and performance analy- 
sis show that the breathing threshold calculated using (16) 
results in good pitch detector performance. The only 
shortcoming arises when Tis very large, resulting in can- 
didate pulses of unvoiced frames being declared periodic, 
thereby making an unvoiced-to-voiced error. To remedy 
this, we clip (16) and compute the breathing threshold via 

B = b ( T ) ,  T < 10.77, 

= 1.25, T 1 10.77. (17) 

The Pitch Threshold ‘ ‘A” 
The pitch threshold A is used to check if two pitch dis- 

tance estimates belonging to two adjacent frames are close 
to one other. If the absolute value of the difference be- 
tween the two pitch distance estimates is less than A,  it is 
decided that these two estimates are close to one other. 
Otherwise, it is decided that these two estimates are not 
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Pitch distance, T 

2.50 < T 5 3.75 

3.75 < T 5 5 . 0 0  

5.00 < T I 6.25 

6.25 < T 5 7.50 

7.50 < T 5 8.75 

8.75 < T 5 10.0 

TABLE I 
STATISTICAL RESULTS FOR THE BREATHING PARAMETER B (ALL PARAMETERS 

E(B) U E(B) + 4uB 

0.1000 0.1319 0.6276 

0.1192 0.1489 0.7148 

0.1390 0.1585 0.7730 

0.1784 0.1889 0.9340 

0.2072 0.2060 1.0312 

0.2450 0.2241 1.1414 
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1.1 

1.0 
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+ 
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2 4 6 a i o  

PITCH DISTANCE (msec.) 

Fig. 9. Experimental values and a linear approximation of the statistics of 
the breathing parameter B,  that is, E ( B )  + 4a, plotted versus the pitch 
distance as measured in ms. 

consistent and one of them has to be modified. Our task 
here is to determine a reasonable value for A .  

In the previous section, it was found that the maximum 
allowable pitch pulse breathing in a voiced frame is 1.25 
ms. This implies that if the pitch distance estimate 
changed by more than 1.25 ms, over two adjacent voiced 
frames, the distance detector must have made an error in 
determining one or both of the pitch distance estimates. 
Obviously, the logical value for the pitch threshold A is 
1.25 ms. This indicates that the pitch distance estimates 
for two adjacent frames are comparable only if the abso- 
lute value of the difference between the two estimates is 
less than or equal to 1.25 ms. 

IV. PERFORMANCE ANALYSIS 
The parallel processing pitch detector design has been 

tested using the 58-speaker Texas Instruments pitch de- 
tection database [ 161. This database has been carefully 
cross-balanced for the sex and age of the speaker and con- 
tains speakers ranging in age from 3 to 86 years old, 
thereby ensuring a reasonable distribution of fundamental 
frequency. The speech material consists of Harvard pho- 
netically balanced sentences. It is useful to note that the 
parallel processing pitch detector performance, shown be- 
low, is invariant to the specific database used. 

In this section, we first examine the performance of the 

parallel processing algorithm versus several of its key pa- 
rameters. Second, we measure the performance of each 
individual pitch detector, and contrast it to the composite 
system performance. Third, we compare performance of 
a computer simulation and a hardware implementation of 
the parallel processing algorithm to other state of the art 
algorithms. Finally, the performance of the parallel pro- 
cessing algorithm is evaluated under noisy conditions. 

A perceptually weighted objective measure is used to 
compare pitch and voicing estimates from the pitch detec- 
tor to reference pitch contours that have been constructed 
for the database [16], [17]. These reference pitch tracks 
were constructed under a criterion of optimum synthetic 
speech quality for an LPC vocoder operating with a 10 
ms frame duration and with 14th-order LPC analysis. This 
objective measure is known to have a high correlation with 
subjective listening tests [2], [ 161-[ 181 for several speech 
databases under a variety of recording conditions. 

The objective measure tabulates errors in three classes: 
gross pitch errors (GPE), voiced-to-unvoiced errors (V- 
U ), and unvoiced-to-voiced errors ( U-V ) . A gross pitch 
error represents a correctly classified voiced frame where 
the reference pitch track and the candidate pitch track dif- 
fer in fundamental frequency. The GPE score is computed 
by summing the per-frame gross pitch errors over all 
frames in the database. The per-frame gross pitch error is 
given by [16] 

2 
GPEm = Em /Emax ( I (Fm - FRm ) /FRm I ) FRrn / 5 ~  

( 18) 
where E, is the rms energy in the mth frame, Emax is the 
maximum rms energy in the sentence, F, is the pitch fre- 
quency in the mth frame for the test contour, FR, is the 
reference pitch frequency, and 500 Hz is the maximum 
pitch frequency considered. 

A voiced-to-unvoiced error represents a voiced frame 
detected as unvoiced by the pitch tracker. Similar to the 
GPE score, the V-U score is computed by summing the 
per-frame voiced-to-unvoiced errors over all frames in the 
database. The per-frame voiced-to-unvoiced error is given 

(V-U) = (V-U) I for m in the interior of a reference 

= (V-U)m 

by U61 

voiced segment 

voiced segment 

E 
for m at the ends of a reference 

(19 )  

(20) 

where 

( v - u ) ~  = Ern/Ernax(l + ~ ~ r n / 5 ~ )  

and 

An unvoiced-to-voiced error represents an unvoiced 
frame classified as voiced. Similar to the GPE and V-U 
scores, the U-V score is computed by summing the per- 
frame unvoiced-to-voiced errors over all frames in the da- 
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-speech 

+speech 

-midual 

+midual 
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Amplitude Threshold -g" 

0.125 0.25 0.5 0.75 

3.63 3.47 3.29 4.15 
(17.83) (17.27) (16.73) (20.14) 

2.80 2.60 2.47 3.15 
(15.94) (15.23) (14.88) (18.06) 

10.60 10.53 10.98 16.98 
(37.95) (37.77) (38.93) (50.06) 

7.17 7.00 7.59 14.24 
(29.71) (29.36) (30.85) (44.33) 

tabase. The per-frame U-V is given by [16] 

sial 

-speech 

+speech 

-residual 

+residual 

for m in the interior of a test 
(u-v)rn = voiced segment 

Interpolation Amplitude Threshold -qB 

0.45 0.55 0.65 0.75 0.85 

4.09 3.83 3.68 3.47 3.74 
(18.95) (18.34) (17.72) (17.27) (17.51) 

3.23 2.87 2.71 2.60 2.81 
(16.71) (15.93) (15.64) (15.23) (15.82) 

8.58 8.43 8.71 10.53 12.97 
(34.61) (34.20) (34.59) (37.77) (41.79) 

6.56 6.28 6.65 8.00 11.68 
(25.09) (24.66) (25.36) (29.36) (34.20) 

. 

E for m at the ends of a test 
voiced segment (22) 

= ( u - v ) m  

where 

(U-V): = Em/EmaX( 1 + FRm/500) (23) 

and 

(u-v): = ~m/~max(~~m/5OO). (24) 

The total objective score (TOS) is the sum of the three 
measures given above, that is, 

TOS = GPE + (V-U) + (U-V). (25) 

Note that a TOS of zero represents a perfect score, indi- 
cating that the test contour is identical to the reference 
contour. A high TOS score indicates a large difference 
between the reference and test contours. For the objective 
evaluations, the parallel processing algorithm used a 20 
ms frame period, typical of a 2400 bit/s pitch-excited LPC 
vocoder. 

In the pitch detector design described in the previous 
section, there are three parameters of importance. The first 
is referred to as the amplitude threshold g. This threshold 
requires the amplitude of a candidate pulse to be a certain 
percentage of the maximum amplitude in the frame. In 
Table 11, we compare the performance of the individual 
arms of the pitch detector for several values of this am- 
plitude threshold. The performance is optimal when g = 
0.5 for the speech waveform-based arms of the pitch de- 
tector, while performance is optimal when g = 0.25 for 
the LPC residual-based arms of the pitch detector. 

In general, the ability to perform accurate voicing de- 
cisions diminishes in each arm of the pitch detector as the 
amplitude threshold deviates from its optimal value. When 
the threshold is below its optimum value, extraneous can- 
didate pulses are included in the search process, increas- 
ing the probability that an unvoiced frame will satisfy the 
periodicity check and be declared as a voiced frame. Thus, 
more unvoiced frames will be classified as voiced (U-V 
errors). Alternately, when the threshold is above its op- 
timum value, valid candidate pulses are omitted from the 
search procedure, increasing the probability that a valid 
voiced frame will be declared unvoiced (V-U errors). 
These experimental results are consistent with the theo- 
retical results presented in the previous section. 

The second parameter of importance is the amplitude 
interpolation threshold q.  This threshold is used to ensure 
that the amplitude envelope of the candidate pulses 
matches the generally smooth envelope of voiced speech. 
Table I11 shows performance versus the interpolation 
threshold. Tables I1 and 111 exhibit similar performance 
behavior. Optimum performance is obtained when q is 
0.75 for the speech waveform-based detectors and when 
q is 0.55 for the LPC residual-based detectors. The results 

TABLE I1 
PERCEPTUALLY WEIGHTED PERFORMANCE OF THE INDIVIDUAL PITCH 

PERCENT VOICING ERRORS W:TH RESPECT TO ALL FRAMES ARE GIVEN I N  
PARENTHESES) 

DETECTORS FOR DIFFERENT VALUES OF THE AMPLITUDE THRESHOLD g (THE 

presented in Tables I1 and I11 indicate that it is important 
to prescreen candidate pulses to ensure successful and ro- 
bust operation of the periodicity checking procedure. 

The optimal values of the parameters g and q are defi- 
nitely signal dependent. This dependency is due to the 
fact that the LPC residual is a spectrally flattened version 
of the speech signal. The envelope of the residual is there- 
fore less smooth, resulting in the need for a smaller value 
of the two amplitude thresholds. Thus, the values of g and 
q must be smaller for the arms of the pitch detector op- 
erating on the LPC residual, as is shown in Tables I1 and 
111. 

The third important threshold that influences perfor- 
mance of the individual pitch detectors is the breathing 
threshold B .  In Table IV, performance is evaluated as a 
function of the breathing threshold. The breathing thresh- 
old is varied as a percentage of the value determined by 
(16). When the breathing threshold falls below b, the pe- 
riodicity check is less reliable, and the V-U errors in- 
crease significantly. Similarly, when the breathing thresh- 
old is larger than b, the U-V errors increase. 

While one can readily argue that all the information re- 
quired to perform pitch detection is contained in either the 
speech waveform or the LPC residual, we find that sig- 
nificant improvements in performance can be obtained by 
the parallel processing strategy. 'This stems from the fact 
that there is no definitive way to prescreen candidate 
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Signal 

-speech 

+speech 

-residual 

+residual 

TABLE 1V 
PERCEPTUALLY WEIGHTED PERFORMANCE O F  T H E  I N D I V I D U A L  PITCH 

DETECTORS FOR DIFFERENT VALUES OF THE BREATHING THRESHOLD B (THE 
PERCENT VOICING ERRORS WITH RESPECT TO ALL FRAMES A R E  GIVEN IN 

PARENTHESES) 

Breathing Threshold 'B' 

B = 0.70b B = 0.80b B = b B = 1.20b B = 1.30b 

4.16 3.80 3.42 3.62 4.05 
(18.68) (18.05) (17.32) (17.61) (18.06) 

3.14 2.81 2.45 2.54 2.98 
(16.44) (15.64) (15.21) (15.62) (15.94) 

11.63 10.92 9.88 10.06 10.83 
(39.86) (38.30) (36.92) (36.96) (37.04) 

7.39 7.01 6.78 6.93 7.16 
(29.98) (29.42) (29.34) (29.57) (29.81) 

Pitch Detector 

Gold-Fbbmer 

Cepstral 

Integrated Correlation 

PPPD Simulation 

PPPD Firmware 

pulses such that only valid pitch pulses remain in the pe- 
riodicity checking procedure. Even when all candidate 
pulses have been correctly identified in a particular wave- 
form, natural variations in the fundamental frequency will 
sometimes create failures in the periodicity checking pro- 
cedure. In Table V, the performance of each individual 
pitch detector is compared to the cpmposite system. In 
this experiment, the pitch detector parameters are set to 
their optimal values based on the data in Tables 11-IV. In 
general, the LPC residual gives poorer pitch estimates 
than the speech signal. 

It is important in any pitch detection evaluation to com- 
pare the performance of the parallel processing algorithm 
to state of the art in pitch detection [ 181. The performance 
of several common pitch detectors is compared to two 
versions of the parallel processing algorithm in Table VI. 
With the 58-speaker pitch detection database, audible dif- 
ferences between pitch detectors that give a composite 
performance below 1 .O are generally not significant. Per- 
formance at this level has saturated, and a broader data- 
base is required to reliably discriminate differences. As 
can be seen from Table VI, the parallel processing algo- 
rithm does significantly better in determining both voicing 
and pitch frequency information. 

Finally, in Tables VI1 and VIII, the performance is 
evaluated for various signal-to-noise ratio (SNR) condi- 
tions. The data in Table VI1 represent the pitch detector 
performance when noise from a long-distance telephone 
connection is added to the 58-speaker database. A time- 
averaged FFT of this telephone noise is shown in Fig. 10. 
The test conditions for Table VI11 were created by adding 
actual helicopter noise, as heard inside the cockpit, to the 
58-speaker database. A time-averaged FFT of the heli- 
copter noise is shown in Fig. 11. The level of the additive 
noise in both cases was adjusted such that a particular 
SNR is maintained on a per-file basis. It is clear from 
Tables VI1 and VI11 that good performance is maintained 
at SNR levels down to 10 dB. Below 10 dB, the SNR is 
so low that the speech waveform itself becomes obscured, 
and pitch pulses are difficult to identify from the noisy 
waveform. This causes a significant increase in the V-U 

GPE V-U U-V Total 

0.25 4.08 0.56 4.90 

0.39 1.62 1.85 3.86 

0.23 0.38 0.65 1.29 

0.10 0.08 0.11 0.29 

0.10 0.08 0.11 0.29 

TABLE V 
PERCEPTUALLY WEIGHTED PERFORMANCE O F  T H E  I N D I V I D U A L  PITCH 

PERCENT VOICING ERRORS W I T H  RESPECT TO ALL FRAMES A R E  G I V E N  I N  
PARENTHESES). GPE REPRESENTS GROSS PITCH ERRORS; V-U REPKESI'NTS 
VOICED-TO-UNVOICED ERRORS; U-V REPRESENTS UNVOICED-TO-VOICFD 

DETECTORS A N D  THE FINAL OUTPUT OF THE COMPOSITE SYSTEM (THE 

ERRORS; AND TOTAL IS THE S U M  OF ALL T H E  ERRORS 

Signal 

-speech 

+speech 

-residual 

+residual 

Composite 

GPE V-U U-V Total 

0.07 3.05 0.04 3.16 
(16.2) (1.3) (17.5) 

0.03 2.24 0.06 2.33 
(11.5) (1.3) (12.8) 

0.10 8.13 0.01 8.24 
(42.5) (0.2) (42.7) 

0.05 6.15 0.01 6.21 
(31.6) (0.2) (31.8) 

0.10 0.08 0.11 0.29 
(1.2) (3.2) (4.3) 

TABLE VI1 
PERCEPTUALLY WEIGHTED PERFORMANCE O F  THE P A R A L L ~ L  PROCESSING 

THE ADDITIVE NOISE IS FROM A LONG-DISTANCE TELEPHONE CONNECTION 

UNVOICED ERRORS; U-V REPRESENTS UNVOICED-TO-VOICED ERRORS; A N I )  

PITCH DETECTOR FOR DIFFERENT SIGNAL-TO-NOISE RATIOS (SNR) W H E R E  

GPE REPRESENTS GROSS PITCH ERRORS; V-U R E P R ~ S E N T S  VOICED-TO- 

TOTAL IS THE S U M  OF ALL T H E  ERRORS I SNR I GPE V-U U-V Total 1 
I 

-10 
-5 
0 
5 
10 
20 
30 
40 

0.18 20.63 0.08 20.89 
0.30 12.24 0.02 12.56 
0.16 4.62 0.01 4.79 
0.07 1.65 0.02 1.73 
0.16 0.68 0.03 0.87 
0.15 0.21 0.05 0.42 
0.10 0.11 0.08 0.29 
0.10 0.09 0.10 0.29 

error is the dominant factor in the total objective measure 
when the SNR is below 10 dB. Tables VI1 and VI11 also 
show the robustness of the pitch detector to different noise 
characteristics. 

Since the majority of the waveform-based parallel pro- 
cessing algorithm consists of integer arithmetic and logic- 
type operations, there should be no great obstacle in 
maintaining the performance of the computer simulation 

errors, and as Tables VI1 and VI11 indicate, this type of in hardware. The only portion of the algorithm that re- 
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GPE V-U U-V Total 

0.15 21.30 0.11 21.56 
0.21 11.91 0.11 12.23 
0.21 5.01 0.08 5.30 
0.11 1.89 0.03 2.04 
0.10 0.77 0.03 0.89 
0.10 0.25 0.05 0.40 
0.10 0.12 0.07 0.29 
0.10 0.09 0.10 0.29 

~ 

0 4Ooo 

FREQUENCY (Hz) 

Fig. 10. Time-averaged fast Fourier transform in dB of noise from a long- 
distance telephone connection, measured over a 4 kHz frequency band. 

0 

FREQUENCY (Hz) 

Fig. 1 1 .  Time-averaged fast Fourier transform in dB of helicopter noise as 
heard inside the cockpit, measured over a 4 kHz frequency band. 

quires notable arithmetic precision is the LPC analysis and 
the LPC residual generation. Fixed-point implementation 
of LPC analysis is a relatively mature process. The per- 
formance of the firmware implementation described in the 
next section was shown in Table VI, and is identical to 
the floating-point computer simulation. The parallel pro- 
cessing pitch detection algorithm is attractive not only be- 

cause of its robust performance, but also because of its 
insensitivity to fixed-point arithmetic. 

V. FIRMWARE IMPLEMENTATION AND OPERATION 
The parallel processing pitch detector was implemented 

in real time as part of a 2.4 kbit/s vocoder system. The 
complete full-duplex system (LPC parameter computa- 
tion, pitch detection, and LPC synthesis) was imple- 
mented on a single TMS32020 digital signal processor 
with a 200 ns instruction cycle time. The performance 
analysis given in the previous section indicated that the 
real-time fixed-point implementation of the pitch detector 
has identical performance to that of a computer simula- 
tion. 

The TMS32020 architecture is well suited for efficient 
implementation of the pitch detector. It is clear why effi- 
cient implementation is desirable. We need only to con- 
sider the real time required for the LPC parameter com- 
putation, the LPC synthesis process, and execution of the 
pitch detector routine four times per frame. One espe- 
cially useful feature of the TMS32020 when defining can- 
didate palses is the 544 words of on-chip data memory. 
Finding the candidate pulses involves frequent addressing 
of the speech and residual sample points and consumes a 
large portion of the total execution time for an individual 
pitch detector. It is therefore desirable to minimize this 
addressing time. This can be easily done by storing all of 
the frame’s 320 speech and residual sample points on- 
chip, thereby reducing the addressing time to a minimum 
of one instruction cycle time compared to two cycles if 
the data were to be stored off-chip. 

Table IX shows the major operations of the individual 
pitch detector and their corresponding average execution 
time computed as a percentage of the total execution time 
for an individual pitch detector. It must be emphasized 
that these percentage execution times are per-frame aver- 
ages, implying some variability from frame to frame. For 
instance, if the frame is voiced, the probability of finding 
periodicity in the first or second pass of the periodicity 
checking procedure is much larger than that if the frame 
is unvoiced. In fact, for the unvoiced case, the periodicity 
checking procedure must consider all possible subsets of 
candidate pulses for periodicity before declaring the frame 
unvoiced. Therefore, a longer execution time for the pe- 
riodicity checking procedure is needed in the case of un- 
voiced frames than in the case of voiced frames. Another 
example showing the variability of the above percentage 
execution times occurs when comparing the execution 
times of a high-pitched speaker versus a low-pitched 
speaker. If the speaker is high pitched, then there is a 
larger number of pitch pulses in a voiced frame. Conse- 
quently, a larger number of candidate pulses is defined, 
implying longer execution times for defining candidate 
pulses and performing the amplitude interpolation test. It 
was determined that the four arms of the parallel process- 
ing pitch detector combined consume 25-35 percent of 
the total available real time and the pitch voter consumes 
4 percent of the total real time. 
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TABLE IX 
AVERAGE EXECUTION TIMES PER FRAME COMPUTED A S  A PERCENTAGE OF 

THE TOTAL EXECUTION TIME FOR A N  INDIVIDUAL PITCH DETECTOR 

Operation Percentage Ekcution Time 

Candidate P&e Defmition 
and Amplitude Teat 

Interpolation Test 

Periodicity Check 30% 

VI. CONCLUSIONS 
A pitch detection algorithm based on a parallel pro- 

cessing technique has been presented. Accurate pitch de- 
tection is achieved by suitably combining pitch estimates 
from four individual pitch detectors operating on four dif- 
ferent signals. The performance of this parallel process- 
ing pitch detector was evaluated on a large database and 
compared to other well-known pitch detection algorithms. 
Our results show that this pitch detector has a superior 
performance and gives a very reliable and accurate pitch 
estimate. Furthermore, this performance is maintained in 
a real-time fixed-point implementation, implying that this 
algorithm is insensitive to the limitations of fixed-point 
arithmetic. This is attributed to the fact that the majority 
of the algorithm computations are integer arithmetic and 
logic-type operations. 

It is clear from the performance analysis that the pitch 
detector performance on studio quality speech is excel- 
lent. Under noisy conditions, our results show that very 
good pitch detector performance is maintained at SNR 
down to 10 dB. The results also show the robustness of 
the pitch detector operating on noisy speech with different 
noise characteristics. Future efforts are directed toward 
maintaining good performance under severe noisy condi- 
tions, particularly at SNR below 10 dB. 
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