
is,  all  components  are  calculated  in  place  in  the  same way as  the 
ordinary DIT  algorithm. 

In  Fig. 1 ,  the first  weight  in  each  bunch  of  butterflies  of  each 
stage is  unity: Wo = 1 ,  while  it is  not  always so in  Fig. 2. Thus, 
the modified  algorithm  apparently  seems  to  have  more  complex 
multiplications.  The  brief  observation,  however,  reveals  one  of  the 
weights  in  the  bunch  to  be  either Wo = 1 or WNI2 = - 1. Since  a 
subtraction  is  equivalent  in  complexity to  an addition,  the  modified 
algorithm  has  same  load of  calculations  as  the  ordinary  one. 

Pruning 
Pruning  the modified  algorithm  is  shown  in  Fig. 2.  Here  again, 

only  calculations  which  correspond  to  bold  solid  lines  are  neces- 
sary.  They  have a  repetitive  pattern  between  adjacent  stages,  in 
contrast to the  apparent  random  pattern  in  Fig. 1. 

The  repetitive  pattern simplifies the modified  algorithm.  In  order 
to obtain  the  components  of  the Kth to ( K  + L - 1)th  frequencies, 
one  has  only  to  compute simply from  the first to Lth or all  butter- 
flies  in  each  bunch of  the  ith  stage,  depending  on  whether 2i-1 > 
L or  not,  respectively.  Owing  to  the  repetitive  pattern,  the bold 
solid  lines  exist  always  only in the first to  Lth,  or all  butterflies in 
each  bunch.  This results  in  a  very  simple  Fortran  program as shown 
in  Fig. 3. 

This  program  requires shuffled  data  and  calculates  components 
within  desired  frequency  band  effectively.  There  are  shortened  but- 
terflies to  be  calculated  in  pruned  stages,  as  can  be  seen in Fig. 2; 
but  this  program  calculates  complete  butterflies.  For  the  example 
of  Fig. 2, therefore,  it  calculates  not  only  the  outputs K and K + 
1 ,  but  also K + 8 and K + 9. Addition  (subtraction)  time  is  neg- 
ligible,  and  complete  butterfly  evaluation,  which  is  also  employed 
in [2], fairly  simplifies  the  program. 

So far,  only  the  case  to  compute narrow-band  components has 
been  considered.  If  time  sequence  has  trailing  zeros  for  high  res- 
olution  of  frequency,  the  algorithm  given by [4] can  be taken in  as 
similarly  as in [2]. 
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Abstract-The  stepdown  procedure is an  algorithm  in  which  the  pre- 
dictor  parameters  of  a  direct  form  digital  filter  are  converted  to  the 
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Fig.  1. Complex  lattice  filter  analyzer. 

corresponding  real  reflection  coefficients  of  a  digital  lattice  filter.  In 
this  correspondence,  a  derivation of the  stepdown  procedure for com- 
plex predictor  parameters is presented.  The  complex  stepdown  proce- 
dure is a useful  tool  for  applications  ranging  from  complex  filter  design 
to  complex  predictor  coefficient  transformations. 

I.  INTRODUCTION 
When  modeling  a  complex time  series  as  an  autoregressive (AR) 

process,  or  equivalently, as a  linearly  predictable  signal,  it  is  fre- 
quently  convenient  to  be  able  to  convert  from  a  lattice  filter  to  a 
finite  impulse  response  (FIR)  filter  realization.  This  is  commonly 
referred to  as  the  process of  converting  reflection  coefficients  to 
predictor  parameters.  This  can  be  accomplished  via  the  Levinson- 
Robinson  algorithm [ 11, or  the Durbin  recursion (or  stepup proce- 
dure) [2]. It  is  also  useful to  be  able  to  convert  in  the reverse  di- 
rection,  a  process  that  is  know  as  the  stepdown  procedure [l]. In 
this  correspondence,  the  stepdown  procedure  is  extended  to  the 
complex  case.  It  is  assumed  that  only  the  highest  order  predictor 
coefficients are  available. 

The  complex  digital  lattice  filter  is  depicted  in  Fig. 1 .  The se- 
quence  at  stage i of  the  lattice filter,  defined as  the forward  predic- 
tion  error ei(rn), can  be  written  in z-transform  notation as 

where 
i 

A&) = 1 - c ujz -j, 
j = 1  

The  sequence s(rnT) represents  the  input  signal s(t) sampled at  its 
Nyquist  rate (1/T  Hz). 

The filter  parameters  of (2) ,  defined as predictor  parameters aj, 
can  be obtained  from  reflection  coefficients kj using  the  Durbin  re- 
cursion [ 1 ]-[3]: 

a.  . = k.  
I , 1  I (4) 

a .  . = a. 
1.1 t - l , j  - kjuT-l, i- j ,  1 5 j 5 i - 1. (5 )  

The  procedure  in (4) and (5 )  is performed  recursively for i = 1, 2 ,  
* . . , p ,  and  when i = p ,  the  final  predictor  coefficients are  ob- 
tained. 

11. DERIVATION OF THE COMPLEX  STEPDOWN  PROCEDURE 
The recursion  relations of (4) and (5)  can  be substituted  into (2), 

where uj = to  give 
i - 1  

Ai(z) = Ai-l(z) - kg-‘ 1 - ,X & I , i - j ~ ’ - j  
.[ , = I  1 (6) 

= Ai-,(Z) - kjz-5ii-l(l/z), (7) 
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Where Ai- (l/z)  is  defined  as 
i- I 

i - j  

From ( l ) ,  the  prediction  error  can now be  written  as 

Ei(Z) = Ai-,(Z)  S(z) - kiz-5ii-l(l/z) S(2). (9) 

Note  that  the first term is essentially  the  error  at  state i - 1. 

term of (9),  that  is, 
Let  the  backward  prediction  error  be  defined  from  the  second 

Bi(Z) = z-’Ai(l/z) S(z)  (10) 
i 

= z-i[l - j = 1  c u : i + l - j z i + q  S(z). (1 1) 

The  inverse  z-transform of (1  1)  yields,  after  an  index  change, 
I 

bi(m) = s(m - i )  - 2 a:js(m + j - i ) .  (12) 

The  backward  prediction  error  is  seen  as  the  error in predicting  the 
sample  at  time m - i from  all  future  samples. 

The  z-transform of the  backward  prediction  error  at  state i - 1, 
from  (1  1), can be  written  as 

j =  1 

r i - l  1 

The  z-transform of the  forward  error,  using (9), can be written  as 

E,(z) = Ej-l(Z) - kiz-’tz-‘+~Ai-,(l/z) S(z)].  (14) 

Using  (13),  the  prediction  error  is  found  from  (14)  via  the  inverse 
z-transform to  be 

ei(rn) = ei-l(m) - kjb i - l (m - 1). (15) 

Thus,  the  lattice  can  be  viewed  as  the  combination  of  a  forward 
and backward  predictor. 

An expression  for  the  backward  prediction  error  similar  to  (15) 
can be  found  [4] by combining (6) and (lo), yielding 

Bi(Z) = z-’B;- 1(z) - k*Ai_ I(Z) S(z). (16) 

bi(m) = bi-l(m - 1) - k7ei-,(m).  (17) 

Equations  (15)  and  (17), of course,  allow  the  reflection  coefficients 
to  be  computea in the  lattice  filter  formulation of Fig. 1. 

The  stepdown  procedure  can now be obtained [4] using  the re- 
lationships  between  the  forward  and  backward  predictors,  and  one 
additional  relationship  for Ai(l/z) that  follows  from (8), namely, 

After  substituting  (1)  into  (16),  the  inverse  z-transform  will  yield 

zi(l /z) = Ai-](1/Z) - k*zfij-l(z). (18) 

Ai(Z) = Ai-l(Z)[l - lki12] - kjz-’zi(l/z). (19) 

Ai-l(Z) = [Ai(Z) + k,z-’zi(l/z)l/[l - lki121, (20) 

Substituting  (18)  into (8), we  obtain 

Solving  for A i -  l(z), we  find that 

where Iki 1 < 1.  Recall  that  the  stepdown  recursion  assumes  a 
stable  filter. 

Substituting (2) and (8) into  (20)  gives  the  desired  result, 
i -  1 T I 

1 - c q j z - j  i- kjZ+ 
j =  1 

Equation  (21) is solved  recursively by equating  polynomial  coef- 
ficients  for i = p ,  p - 1, 4 , 1  to  obtain  a  set of reflection 
coefficients  from  a  set of predictor  coefficients.  The  computational 
procedure  can  be  summed  up  as  follows: 

with 
k. = a , .  

I 1 . 1 7  

f o r i  = p , p  - 1, a . 0  , 1,  and j = 0, 1, * , i - 1, where 
= ko = 1 for 1 5 i p and Jki 1 < 1.  Equation  (22)  represents  a 
generalization of the  stepdown  procedure  described  in [ 11. For the 
case of real  coefficients, it is  identical  to  that  presented  in [ 13. The 
lattice  filter  realization  is  equivalent  to  the  predictor  parameter  re- 
alization,  from  a  digital  filtering  standpoint. 

111. CONCLUSIONS 
In this  correspondence,  a  technique to transform  complex  pre- 

dictor  parameters to  complex  reflection  coefficients  has  been  pre- 
sented.  This  has  been used  in  processing  speech  as  an  analytic 
(complex)  signal  [4].  Other  applications  include  complex  filter  de- 
sign,  complex  coefficient  coding,  and  complex  predictor  parameter 
to  real  predictor  parameter  transformations [4]. 
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Realization of First-Order Two-Dimensional All-Pass 
Digital Filters 

M.  SUDHAKARA  REDDY, S .  C. DUTTA  ROY, 
AND S. N.  HAZRA 

Abstract-A structure  to  realize  a  first-order  two-dimensional all- 
pass  transfer  function  with  five  multipliers and two  delays  has  been 
proposed.  This  has  been  achieved by modifying  the  signal Bowgraph 
of  an  existing  structure  which  uses six multipliers  and  two  delays.  The 
multipliers  of  the  proposed  structure  are  shown  to  be  real  for  stable 
filters. 

I. INTRODUCTION 
Two-dimensional  all-pass  first-order  functions  are  used as a 

mapping  function  for  transformation of 1-D IIR filters  to  2-D IIR 
filters  and  in  cascade  with  recursive  filters  to  improve  the  overall 
phase  response  of  the  system.  The  realization  of  a  general first- 
order  2-D  all-pass  function  using  six  multipliers  and  three  delays 
is  described  in [l]. More  recently,  Ganapathy et @ E .  [2] have  real- 
ized the  same with  six  multipliers  and  two  delays.  In  this  corre- 
spondence we propose  a  structure  which  uses five  multipliers  and 
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