The

Richard Duncan
Mississippi State University

Quality of Requirements in Extreme Programming

Extreme Programming (XP) is a software process methodology thar nominates writing code as the key activity
throughout the development process. While at first glance this sounds chaotic, a disciplined group utilizing XP
performs sufficient requirements engineering. This paper describes and evaluates the quality of requirements gener-
ated by an ideal group using XP and discusses how the XP process can assist or hinder proper requirements engi-

neering.

Extreme Programming (XP) is a hot,
new software process methodology for
medium to small sized organizations. It is
designed with requirements drift as a fun-
damental occurrence to be embraced,
rather than dealing with it as a necessary
evil. XP nominates coding as the key activ-
ity throughout the development process,
yet the methodology is based on econom-
ics [1].

Dr. Barry Boehm presented that the
cost of change grows exponentially as the
project progresses through its lifecycle [2],
Stuart Faulk reiterates this by stating that
the relative repair cost is 200 times greater
in the maintenance phase than if it is
caught in the requirements phase [3]. XP
challenges that this is no longer the case.
While it is more expensive to modify code
than to modify a prose description, with
modern languages and development tech-
niques it is not an exponential increase.

Instead, Beck asserts that the cost for
change levels out. Rather than spend extra
effort in the requirements analysis phase to
nail down all requirements (some of which
will become obsolete through require-
ments drift anyway), accept that changes
due to incomplete requirements will be
dealt with later. XP assumes that lost
resources in rework will be less than the
lost resources in analyzing or developing
to incomplete requirements .

The primary vehicle for requirements
elicitation in XP is adding a member of
the customer’s organization to the team.
This customer representative works full
time with the team, writing stories — (sim-
ilar to Universal Markup Language
(UML) Use Cases) — developing system
acceptance tests, and prioritizing require-
ments [4]. The specification is not a single
monolithic document; instead, it is a col-
lection of user stories, the acceptance tests
written by the customer, and the unit tests
written for each module. Since the cus-
tomer is present throughout the develop-

June 2001

ment, that customer can be considered
part of the specification since he or she is
available to answer questions and clear up
ambiguity.

The XP life cycle is evolutionary in
nature, but the increments are made as
small as possible. This allows the customer
(and management) to see concrete
progress throughout the development
cycle and to respond to requirements
changes faster. There is less work involved
in each release, therefore the time-con-
suming stages of stabilization before
releases take less time. With a longer itera-
tion time it may take a year to incorporate
a new idea: with XP this can happen in less
than a week [2].

A fundamental of XP is testing. The
customer specifies system tests, the devel-
opers write unit tests. This test code serves
as part of the requirements definition — a
coded test case is an unambiguous medi-
um in which to record a requirement. XP
calls for the test cases to be written first,
and then the simplest amount of code to
be written to specify the test case. This
means that the test cases will exercise all
relevant functionality of the system, and
irrelevant functionality should not make it
into the system [1].

This paper describes and evaluates the
requirements engineering processes associ-

ated with the XP paradigm.

The XP Requirements
Engineering Process

Harwell et al. break requirements into two
types — product parameters and program
parameters. A product parameter applies
to the product under development, while
a program parameter deals with the mana-
gerial efforts that enable development to
take place [5]. The customer who becomes
a member of the XP team defines both
product and program parameters. The
product parameters are defined through

stories and acceptance tests, while the pro-
gram parameters are dealt with in release
and iteration planning.

The product parameters are chiefly
communicated through stories. These sto-
ries are similar to Use Cases defined in
UML, but are much simpler in scope [4].
Developing a comprehensive written spec-
ification is a very costly process, so XP uses
a less formal approach. The requirements
need not be written to answer every possi-
ble question, since the customer will
always be there to answer questions as they
come up. This technique would quickly
spiral out of control for a large develop-
ment effort, but for small- to medium-
sized teams (teams of fewer than 20 people
are most often reported) it can offer a sub-
stantial cost savings. It should be noted,
however, that an inexperienced customer
representative would jeopardize this prop-
erty.

The programmers then take each story
and estimate how long they think it will
take to implement it. Scope is controlled
at this point — if a programmer thinks that
the story, in isolation, will take more than
two weeks to implement, the customer is
asked to split the story. If the programmers
do not understand the story they can
always interact directly with the customer.
Once the stories are estimated, the cus-
tomer selects which stories will be imple-
mented for the upcoming release, thereby
driving development from business inter-
ests. At each release, the customer can
evaluate if the next release will bring busi-
ness value to the organization [1].

Each story to be implemented is bro-
ken up into tasks. A pair of programmers
will work to solve one task at a time. The
first step in solving a task (after under-
standing, of course) is to write a test case
for it. The test cases will define exactly
what needs to be coded for this task. Once
the test cases pass, the coding is complete
[1]. Thus the unit tests may be considered

www.stsc.hillafmil 19

Software Development Methodology

a form of requirements as well. Every test
(across the entire system) must pass before
new code may be integrated, so these unit-
test requirements are persistent. This is not
to say that simple unit testing counts as an
executable specification — but XP’s test-
driven software development does record
the specific requirements of each task into
test cases.

The final specification medium for
product requirements is the customer
acceptance tests. The customer selects sce-
narios to test when a user story has been
correctly implemented. These are black-
box system tests, and it is the customer’s
responsibility to ensure that the scenarios
are complete and that they sufficiently
exercise the system [6]. These acceptance
tests serve as an unambiguous determiner
as to when the code meets the customer’s
expectations.

How XP Rates

The XP requirements engineering process
can be analyzed by considering the 24
quality attributes for software require-
ments specification (SRS) proposed by
[7]. Davis et al. propose that a quality SRS
is one that exhibits the 24 attributes listed
in Table 1. Rather than applying these
metrics to a given document, they are used
here to measure the requirements that the-
oretically come out of the XP process. Of
course, a quality SRS is mostly dependent
on the discipline used by the people asso-
ciated with the project, but specific fea-
tures of XP can influence the quality of a
SRS.

A specification created with XP would
appear to score very well across most of
these attributes, but fare poorly on others.

ities. Following is a look at some of the quality
attributes.

Unambiguous, Correct, and Under-
standable: Since the customer is present,
ambiguity and problems understanding
the requirements are generally minimal
and easily solvable [1] . Requirements are
correct if and only if each represents an
actual requirement of the system to be
built. Since the customer writes the stories
from business interests, the requirements
should all be correct. With so much
responsibility and freedom, clearly the
selection of an appropriate customer rep-
resentative is crucial to the success of the
project. Even if the customer does not
know exactly what he or she desires at the
start of the project, the evolutionary
nature of XP development leads to a sys-
tem more in line with the customer’s
needs.

Modifiable: The XP lifecycle allows

changes to the requirements specification
at nearly any point in system develop-
ment. The specification exists as a collec-
tion of user stories, so the customer can
switch out one future story for another
with little impact on existing work. Since
the planning, tests, and integration are all
performed incrementally, XP should
receive highest marks in modifiability. Of
course, work may be lost in this
changeover, but with XP the programmers
should be able to estimate how much a

change will cost.

Unambiguous, Verifiable: Since the cus-
tomer writes acceptance tests (with the
assistance of programmers), it could be
argued that the functional specification is

recorded in an unambiguous format.
Furthermore, the first activity performed
by a programming pair to solve a task is to
write test cases for it. These test cases
become a permanent part of the specifica-
tion/test suite. Customers (with the help
of the XP coach) will also make sure that
the specification is verifiable, since they
know that they will have to write test cases for it.
Annotated by Relative Importance: The
customer defines which user stories they
wish implemented in each release. Hence,
each requirement is annotated by relative
importance at this time — the customer
should for ask the highest-priority stories
to be implemented first and the program-
mers are never left guessing priorities.
Achievable: Since cach release provides
some business value, a portion of the sys-
tem found to be unachievable should not
leave the customer with a very expensive
yet unusable piece of technology. If the
high-risk piece is important, it will be
implemented first, in which case the
unachievable component should be found
quickly and the project aborted relatively
inexpensively. If it is less important, then
the system may be delivered in useful form
without it

Design Independent: Design independ-
ence is a classic goal for requirements, but
today’s object-oriented development
methods recognize that design independ-
ent requirements are often impractical.
Portions of the requirements (such as the
user stories) can be very design independ-
ent, but the unit tests that are archived as
part of the requirements and used to cross-
check new modules may depend heavily

Table 1: The 24 Quality Attributes [7]

Those quahtles with a “+ symbol indicate 1. Unambiguous + 13. Electronically Scored +/-
that the subsequent paragraphs argue the 2. Complete - 14. Executable/Interpretable +/-
XP process can lead to an improvement in 3. Correct + 15. Annotated by Relative +
the area: a “-” that XP detracts from the Importance : _

I The “4+/- . indi 4. Understandable + 16. Annotated by Relative Stability | ?
quality. - 1he ~+/-° annotation indicates 5. Verifiable + 17. Annotated by Version +
that XP partially helps and partially harms 6. Internally Consistent | +/- 18. Not Redundant -
a specification in achieving the quality. 7. Externally Consistent | +/- 19. At the Right Level of Detail ?
Many of the qualities are not addressed by 8. Achievable A 20. Precise ?
XP and are hence annotated with a “2.” for 9. Concise + 21. Reusable ?

anda ? . ehcea o,a ¢ W. ? v .O 10. Design Independent | +/- 22. Traced ?
these qualities a group’s organization, dis- 11. Traceable 2 23. Organized 2
cipline, and specific project needs will 12. Modifiable + 24. Cross-Referenced ?
decide. It should be noted that to reli- 13. 25.

giously follow XP requires a great deal of
discipline: This discipline should be

expected to carry over into the other qual-

+ indicates XP may assist in this area.
- indicates XP degrades this area.

+/- indicates XP both assists and degrades.
? indicates XP has little bearing on the area.

20 CrossTALK The Journal of Defense Software Engineering June 2001

on the actual system.

Electronically Stored: XP calls for the
stories to be written on index cards, so this
portion of the requirements is not elec-
tronically stored. While the stories could
be placed in a word processor, Jeffries et al.
assert that handwritten index cards pro-
duce less feelings of permanence and allow
the customer to more freely change the
system [4]. The customer is also available
as a requirements resource, obviously not
electronically stored. However, the
requirements are written on individual
cards so modifications can often be local-
ized to a single card if rewriting is neces-
sary. Furthermore, the customer codifies
the system requirements with acceptance
tests, so it could be argued that the most
important part of the specification is
stored.

Complete, Concise: XP stresses program-
ming as the most important development
activity, hence little effort is spent on cre-
ating documents, therefore the specifica-
tion is very concise. The cost may be a lack
of completeness, however. Since litde up
front analysis takes place, there may very
well be holes in the system. Yet the cus-
tomer drives what functionality is imple-
mented and in what order, so true func-
tionality should not be left out.
Furthermore, since the XP process accom-
modates change, it should be possible to
compensate for these holes later in the
development lifecycle.

Security Assurances

Since the XP development methodology
does not progress from a verified require-
ments document, how might a system
developed with XP rate on a security eval-
uation? The Common Ciriteria has seven
evaluation assurance levels (EAL1-EAL7).
For EAL5 and above the Common
Evaluation Methodology calls for the sys-
tem to be semi-formally designed and test-
ed [8]. This leaves two questions to be
addressed. First, can a project use formal
methods with XP? Second, without formal
methods, how trusted can a system devel-
oped under XP be?

The XP process screams informality in
many respects. The name alone conjures
images of snowboarders with laptops, and
even the books about XP are written in a
conversational tone. Nevertheless, what
would happen if the customer writes sto-

June 2001

ries and they are annotated with a formal
specification? Clearly, this would entail a
large cost in training personnel, writing
the specifications, and verifying the speci-
fications. This also reduces the agility of
the XP product — since more money is
spent on specification, the cost of change
will increase. But if each story were rewrit-
ten in a formal notation it would be possi-
ble to formally verify the specification and
design.

Formal methods aside, the way an XP
project progresses does offer many assur-
ances of trust. First, all code is written
directly from the user stories (the specifi-
cation). All functionality is tested in the
unit tests and all integrated code is
required to pass all tests all the time.
While testing does not guarantee the
absence of errors, many security holes
come from poorly tested software. Hence,
the test-oriented nature of XP may be a
great step forward.

A strong security feature of XP is pair
programming. The observer in a pair con-
stantly evaluates the code being written by
his or her partner. This programmer can
help reduce the probability of coding
errors that might later be exploited (e.g.,
buffer overruns). XP also adds counterbal-
ances to reduce the impact of a single
malicious coder (either in a truly malevo-
lent sense or inadvertently opening holes
as Easter Eggs® side effects) through the
pairing process. Rather than just inserting
code into the system, one programmer
would have to convince the other of a
rationale for why the code was being
inserted. Due to collective code owner-
ship, it is entirely possible that the next
pair in the course of re-factoring would
catch malicious code. Pair programming
and collective code ownership add further
assurance that the code is written exactly
to the specification.

Conclusions

XP performs requirements engineering
throughout the life cycle in small informal
stages. The customer joins the develop-
ment team full time to write user stories,
develop system acceptance tests, set prior-
ities, and answer questions about the
requirements. The stories are simpler in
scope to use cases because the customer
need not answer every conceivable ques-
tion. The informal stories are then trans-

The Quality of Requirements in Extreme Programming

lated into unit and system acceptance
tests, which have some properties of an
executable specification.

Of the 24 quality attributes of a soft-
ware specification, the XP process leads to
higher points in nine attributes and lowers
the score in two. The most noteworthy
gains are in ambiguity and understand-
ability, since the customer is always pres-
ent to answer questions and clear up prob-
lems. Furthermore, since the customer is
also responsible for developing test scenar-
ios he or she will create more verifiable
requirements. The discipline enforced by
the XP process should also carry over into

other areas of requirements engineering.[]

Notes

1. XP has been used on several projects.
Beck mentions a campaign manage-
ment database, a large-scale payroll sys-
tem, a cost analysis system, and a ship-
ping and tariff calculation system in (9).
Yet there is little objective data available
for analysis at this time. More data
should be made available through the
upcoming XP Universe Conference,
Raleigh, NC, July 2001,
WWW.Xpuniverse.com

2 An unsolicited, undocumented piece of
code a programmer inserts into soft-
ware, generally for his or her own
amusement.

References

1.Beck, Kent, Extreme Programming
Explained: Embrace Change, Boston,
Addison Wesley, 2000.

2.Boehm, Dr. Barry, Software Engineering
Economics, Prentice Hall, 1981.

3.Faulk, Stuart, Software Requirements: A
Tutorial, Software Engineering, [What
Month?] 1996, pp. 82-103.

4 Jeffries, Ron; Anderson, Ann; and
Hendrickson, Chet, Extreme Programming
Installed, Boston, Addison Wesley, 2001.

5.Harwell, Richard; Aslaksen, Erik;
Hooks, Ivy; Mengot, Roy; and Prack,
Ken, What is a Requirement?
Proceedings of the Third Annual
International Symposium National
Council Systems Engineering, 1993,
pp- 17-24.

6.Extreme Programming: A Gende Introd-
uction, www.ExtremeProgramming.org

wwwistsc.hillaf.mil - 21

7.Davis, Alan; Overmyer, Scott; Jordan,
Kathleen; Caruso, Joseph; Dandashi,
Fatma; Dinh, Anhtuan; Kincaid, Gary;
Ledeboer, Glen; Reynolds, Patricia;

Sitaram, Pradhip; Ta, Anh; and
Theofanos, Mary, Identifying and Measuring
Quality in Software Requirements

Specification, Proceedings of the First
International Software Metrics Symposium,
1993, pp. 141-152.

8.Common Criteria, International Standard (IS)

15408, csre.nist.gov/cc/ccv20/cev2listhim,
September 2000.

9.Beck, Kent, Embracing Change with
Extreme Programming, Computer,

October 1999, pp. 70-79.

Ahout the Author

Richard Duncan is pursuing
a master’s degree in comput-
er science at Mississippi State
(MSU) with

emphasis in software engi-

neering. He has held sum-
mer internships at Microsoft, AT&T Labs
Research, and NIST. His current research
interests involve applying software-engineer-

FPO

University

ing process to the development of a public
domain speech recognition system at the
Institute for Signal and Information
Processing at MSU.

Mississippi State University

PO. Box 9571

Mississippi State, MS 39762
Voice: 662-325-8335

Fax: 662-325-2292

E-mail: Richard.Duncan@jeee.org

Letters to the Editor

Editor:

Just a note to let you know the address for
the SPI EGroups web site you reference on
page 19 of Marchs CrossTalk needs to be
updated. Yahoo recently took over eGroups so
the address is now
htp://groups.yahoo.com/group/spi

I am the creator, owner, and moderator of
this group, and just out of curiosity, was won-
dering how you came about including it in this
issue. 'm very pleased to see it there!

Thanks,

Maj. Andrew D. Boyd

Chief, Software Quality Assurance
Section

USAF

22 CRrossTALK The Journal of Defense Sofcware Engineering

BACKTALK ’

Have We Lost Our Focus?

Having recovered from a wonderful
case of laryngits, I just got back
from a great Software Engineering Process
Group conference in New Orleans. A
great time was had by all. Between the
SEPG conference and reviewing papers
for this issue of CrossTalk, I am totally up-
to-date on the latest and greatest in
methodologies.

Back in 1969 I started my life as a pro-
grammer/developer/computer
scientist/software engineer. (As you get
promotions, you don’t just get pay raises.
You get neater and spiffier job titles, too!).
I first learned to program a Wang pro-
grammable calculator in junior high — a
gift to the school from a local company
that needed a tax break. At that time the
calculator was the size of a desk and filing
cabinet with (a whopping) 256 bytes of
memory, a paper tape reader, and a single
punch card input. Not a deck of cards,
mind you, but a single card: punched by
hand, eighty columns, 12 rows.

There were only 61 possible instruc-
tions in the Wang instruction set, so each
row in the punched card could encode two
six-bit operations. Therefore, each card
could contain 160 instructions. To gain
admission to the “Computer Science
Club,” you had to be able to program the

quadratic equation on a single card.

(Remember ax2 + bx + ¢ = 0, given a, b,
and ¢, solve for x?) Once you accom-
plished this Herculean task, why, you were
considered a programmer!

I remember how smart 1 felt after
accomplishing this task. I was a hacker, a
member of the brotherhood/sisterhood! I
could code! We didn’t use a methodology
— design was for wimps! I remember trying
to explain to my girlfriend about what I
had accomplished. (This might explain
why I didn’t date much during school).

Fortunately, I matured in my profes-
sion. I joined the Air Force and had to
learn how to design. As my first design
methodology, I flowcharted my code. Of
course — as a true hacker — I knew that if I
finished the code first, the flowcharting
was much easier. I was lucky — I had a wise
and tolerant boss who showed me that
flowcharting was a requirements and
design tool. That when the problem got

too big for me to understand, I had to use
some tool to help me understand and par-
tition the problem.

I eventually became both a computer
scientist and later, a software engineer.
Over the years, I went from flowcharting
to Top Down Structured Design (TDSP);
Hierarchical Input, Process, Output
(HIPO); Structured Analysis and
Structured Design (SASD); Transform
Analysis (TA); Object-Oriented Modeling
and Design (OOMD); Unified Modeling
Language (UML); and Unified System
Development Process (USDP). I tried to
become a Certified Data Processor
(CDP). I earned degrees from institutions
that are Computer Science Accreditation
Board-compliant (CSAB). I studied the
Software Engineering Body of Knowledge
(SWEBOK). I learned lots of acronyms
and new methodologies — new method-
ologies? You know, when I first saw activi-
ty diagrams and sequence diagrams in
UML and USDP, I felt right at home. I
had come full circle. I was flowcharting
again!

It’s never been about the methodology.
Methodologies are simply techniques and
tools to help you partition and understand
the problem. Here’s a kernel of truth — you
cant design a system (let alone code it)
unless you understand what the system is
supposed to do. The methodologies are
there to assist me. They are NOT ends in
themselves — they are simply a means to
the end. You have to focus on the larger
picture — getting the system “out the door”
on time. It’s not enough to be an expert in
the latest and greatest methodology, unless
you can also use it to help produce a sys-
tem on time and under budget. The
methodology has to make you more pro-
ductive. If a methodology helps, use it! If
it doesn’t, get a better methodology! Focus
on the ends, not the means.

And - if all else fails — try drawing a
flowchart. It might make you feel SMART
again!

David A. Cook
Principal Engineering Consultant
Shim Enterprises, Inc.

david.cook@hill.af. mil

June 2001

