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Abstract—The processing of electroencephalograms (EEGs)
is a growing field where mature speech processing techniques
are able to rapidly progress development and understanding of
the associated neuroscience. I-vectors and Joint Factor Analy-
sis (JFA), along with their foundational universal background
models (UBMs) have progressed to a level of understanding
that makes them prime for transition to the EEG community.
To prove the capability of these techniques they are tested
against two contrasting EEG data sets, PhysioNet’s EEG Motor
Movement/Imagery Dataset and the Temple University Hospital
EEG Corpus, to highlight the effectiveness of the techniques
with minimal domain knowledge modifications. The initial re-
sults, presented as equal error rates as low as 20%, support
the development of these techniques as a viable approach to
addressing subject verification within and across subjects.

I. INTRODUCTION

Many techniques for analyzing EEGs come from the speech
community [1], but require modification due to the increase in
complexity of EEG recordings compared to speech recordings.
EEG records are not standardized across subjects, hospitals, or
research groups, as evidenced by our own TUH EEG Corpus
[2], nor is there currently consensus on subject recognition
techniques. Sorting recordings without their associated labels
is a difficult and often unsuccessful process even with the aid
of clinical neurologists [3].

The use of joint factor analysis (JFA), along with the resul-
tant identity vectors (i-vectors), described in [4] progressed in
addressing speaker recognition problems for speech signals.
Since 2007 this work has shown merit as a technique to ad-
dress speech related identification issues: subject identification,
channel modeling, and phoneme detection [4][5][6][7]. Given
the success of this tool when applied to speech signals, this pa-
per applies the basic technique against electroencephalograms
(EEGs) of the human brain.

By applying the tools of JFA and i-vectors to two unique
EEG data sets, the PhysioNet EEG Motor Movement/Imagery
Dataset [8] and the TUH EEG Corpus [2], the feasibility of
these techniques can be determined with respect to EEG data.
Both techniques rely on universal background models (UBMs)
generated for each subject which makes them dependent on
initial feature selection and data quality. Working with two
unique data sets provides a robust testbed to validate feature

selection and resultant UBMs that can be used to develop i-
vectors. This is a preliminary step in developing standards for
these techniques in address subject verification in EEGs, with
the eventual goal of improving medical diagnosis.

II. MATERIALS & METHODS

A. Universal Background Models & I-Vectors

Universal Background Models capture speaker independent
features from training data, turning it into decision surface for
speaker verification. The UBM can be developed to determine
speaker specific models via a maximum a priori scheme. This
relies on a linear interpolation of the models that capture
channel (mobile phone, land line, in-person), noise (traffic,
dog barks), and speaker features (frequency, tone) [4]. Such
an approach is not ideal given that the model conflates speaker
and channel information.

A speaker’s data M arises from a speaker supervector s and
a channel supervector c, in eq. 1. In speech a channel refers
to recording medium (land-line, mobile phone, in person, etc),
whereas with EEGs a channel implies a specific electrode.

M = s+ c (1)

The speaker supervector can be broken down to highlight
common features universal to speech, m, while capturing
eigenvoices, V , and speaker factors, y with residual matrix D
and associated factors, z in eq. 2. This approach is followed
with the channel supervector, producing eigenchannels U and
channel factors x in eq. 3.

s = m+ V y +Dz (2)

c = Ux (3)

Universal Background Models are capable of modeling
features common across the training data, but with JFA they
become more powerful once decomposed into their founda-
tional factors. The underlying assumption is that channel and
speaker factors are independent normal Gaussian distributions
with means of zero [5]. This technique turns a Gaussian
Mixture Model (GMM) supervector M into eigenvoices V ,



Fig. 1. Graphical representation of the PhysioNet data. Each trial contains
30 tasks which can be either event T1 (fists/left), T2 (feet/right), or T0 (rest)

eigenchannel U , and residual D matrices capable of tracking
speaker and channel independence/dependence in eq. 4.

M = m+ V y + Ux+Dz (4)

Starting with the eigenvoice matrix, each matrix is solved
by an initial randomization coupled with a training data based
estimation of the associated factor vector (y, x, z). The
initial random matrix undergoes approximately 20 iterations
of expectation maximization with respect to reducing the error
of the 0th, 1st, and 2nd order statistics of the training feature
set. As each successive matrix is solved it is applied to the
next solution for the remaining undetermined matrices thereby
reducing the uncertainty in the supervector M .

s = m+ Tw (5)

The i-vector approach uses the independence of the three
matrices to find a low-dimensional variability matrix to capture
channel, voice and residual characteristics. Shown in eq. 5,
this relies entirely on the speaker independent supervector m
generated from the UBM. The i-vector weight matrix T is
trained in the same manner as the V matrix from before, but
there are now no channel subsets forcing the i-vector to capture
channel, noise and subject characteristics. This generates an
i-vector, w, that treats channel variations as minor features
to the driving factors seen in the eigenvoices matrix. These
variations on JFA reduce the computational need of the process
and lessens the impact of under represented channels during
training.

Fig. 2. Equal Error Rate plot for the PhysioNet subjects relative to number
of Gaussian mixtures when comparing UBMs to training data.

1) Software: MSR Identity Toolbox: Development of soft-
ware tools relied on importing and modifying the freely
available Microsoft Research Identity Toolbox for MATLAB
[9]. The packaged software implements a Gaussian Mixture
Model - Universal Background Model speaker-recognition and
an i-vector Probabilistic Linear Discriminant Analysis speaker
recognition. This quickly allowed for a baseline system to be
tested without needing to adjust specific algorithm parameters.

In addition to processing the data, the toolbox supports
evaluation by providing tools to present the equal error rate
(EER) from detection error rate trade off plots. There are two
confusion scoring matrices, one for GMM trials (UBMs) and
one for Gaussian Probabilistic Linear Discriminant Analysis
(GPLDA) trials (i-vectors), that are produced along with the
EER. The results from these two evaluations form the basis
of the results.

B. Data Sources & Selection

1) PhysioNet - EEG Motor Movement/Imagery Dataset:
The PhysioNet EEG Motor Movement/Imagery Dataset con-
tains recordings of 109 subjects at 160Hz from 64 electrodes
placed in the standard 10-20 configuration. Each recording
captures a single trial, with 14 unique trials per subject,
each containing 30 tasks [8]. Half the trials require physical
movement and half require imagined movement. The tasks are
divided into contrasting actions: opening/closing fists (event
T1) versus feet (event T2), opening/closing the left (T1) versus
the right (T2) fist, and a rest state (T0). Figure 1 shows a trial
sequence broken down into task order for the specific case of
Trial 4. Each task’s duration is 4 seconds. There were two
additional recordings per subject, resting eyes open (REO)
state and resting eyes closed (REC) state, which serve as
calibration files and were not used in this work.

Data from the first three trials of subjects 1 through 5 were
used to test the effectiveness of a subject specific UBM across
each trial. The first three trials, labeled {R03, R04, R05}, were
used with the UBMs training over over all trials for a given
subject’s results. This is later broken down into results from
specific trials when compared against the full subject UBMs.

2) Neural Engineering Data Consortium - Temple Uni-
versity Hospital EEG Corpus: The data set is a collection

Fig. 3. Equal Error Rate plot for the PhysioNet subjects relative to the number
of Gaussian mixtures when comparing UBMs to testing data.



Fig. 4. Equal Error Rate plot for the PhysioNet subjects relative to the number
of Gaussian mixtures when comparing UBMs to each trial of subject 5.

of patient recordings spanning 2002 to 2014 provided by
Temple University Hospital Philadelphia, Pennsylvania. The
data contains 247 sessions accounting for over 150 hours of
EEG data. Recordings come from patients of various ages and
both genders over the course of their treatment which often
spans years. Each patient presents with a different electrode
configuration, based upon treatment protocol, and a higher
sampling rate than the PhysioNet data. In some cases the
subjects were under photic stimulation to trigger responses
as indicated in the associated header files. Multiple recordings
are logged as sessions in the data, but will be referred to as
trials in this paper to keep the language congruent between
the two data sets.

Five subjects were chosen at random from the publicly
available data set, subjects {1, 3, 5, 6, 9} from folder 001
referred to here forward as subjects {1, 2, 3, 4, 5}. As this set
lacks specific trials, subjects with multiple sessions were found
and UBMs were trained that spanned two of each subject’s
trials. A single TUH EEG trial was longer than the aggregated
three PhysioNet trials, so only two trials were taken for the
TUH EEG data sets. These trials spanned anywhere from years
later to hours later on the same day as the recordings were
dictated by medical necessity.

C. Data Treatment

All of the files were processed in the same fashion regard-
less of data source. A one-second 50% sliding window was

Fig. 5. Equal Error Rate plot for the TUH EEG Corpus subjects relative to
the number of Gaussian mixtures when comparing UBMs to test data.

used to build the seven Mel Frequency Cepstral Coefficients
which acted as seed features for the UBM algorithm [1]. These
features were used to build UBMs that had {2, 4, 8, 16, 32,
64} Gaussian mixtures over 10 iterations for each mixture
for the PhysioNet data, while the TUH EEG data stopped
at 32 mixtures due to less electrode channels. All data was
partitioned into test-training sets of 10% test, 90% training.

Training T for the i-vectors was capped at 5 iterations given
the limited size caused ill-conditioned matrices to be formed
at higher iterations. The initial i-vector produced contained
100 rows, but was row reduced to one dimension less than
the number of channels via Linear Discriminant analysis. The
refined i-vector is modeled against all the trials to produce a
general model for the subject that is then evaluated against the
training set.

III. RESULTS

A. PhysioNet Subjects

The training sets used to build the UBMs for each subject
were initially tested against themselves to provide a baseline
accuracy for the testing set. Figure 2 shows the results for each
subject’s UBM versus the GMM mixture count with increasing
error reduction as the number of mixtures increases. The
optimal mixture count of 64 was anticipated as that matches
one-to-one with the number of electrodes. However, the equal
error rates (EER) seen for mixtures of size 16 and 32 were not
anticipated with most cases showing minimal error reduction
after only 16 mixtures.

The testing data results in Figure 3 lacked an overall
trend, but subject specific relationships emerged. Subject 5
performed poorly in terms of training accuracy, but presented
with the most stable EER plots. For both sets of data, Figures
2 & 3, their EER is the within a similar range of 20%-30%
error with minimal variance compared to the other subjects.
Looking closer at subject five’s individual trial training results
in Figure 4 shows that individual trial UBMs performed no
better than the UBM trained across all three trials in Figure 3.

B. NEDC Subjects

The TUH data training set baseline EERs in Figure 5
indicates a strong preference towards smaller mixture sizes

Fig. 6. Equal Error Rate plot for the TUH EEG Corpus subjects relative to
the number of Gaussian mixtures when comparing UBMs to training data.



Fig. 7. Equal Error Rate plot of each trial(session) from subject 5 from the
TUH EEG Corpus relative to the number of Gaussian mixtures.

for the UBMs. Subjects 3, 4, and 5 peak at 8 mixtures, while
subject 5 peaks at 4 mixtures and subject 4 speakers at 16
mixtures. This differs from the trend seen in the PhysioNet
data where they peaked at their number of electrodes, 64. Each
TUH data set tested had between 16 and 32 active channels
so an ideal mixture count was not achieved like it was in the
PhysioNet testing.

With the training data EERs deteriorating as the number of
mixtures is increased, the test data exhibits a similar response
from the increased mixtures in Figure 6. Subject 4’s increase
in error contrasts with the consistency of the other low error
training Subjects 3 & 5. The high error Subjects 1 & 2 remain
consistent across test and training sets. This error is uniform
across individual trial based UBMs, Figure 7, and shows at
most a 5% improvement over being trained on all trials.

IV. CONCLUSION

The two datasets explored are divergent in terms of channels
recorded, type of subject, and testing conditions. PhysioNet
contains healthy subjects responding to visual cues captured
with 64 electrodes while the TUH data contains medical
patients being recorded to diagnosis brain conditions with
variable electrode configurations. In both cases, generated
UBMs from training datasets performed consistently across
different mixture levels to identify the subject specific chan-
nels. Random channel selection of 64 electrodes yields an error
of 98.44% while with 23 channels, the smallest TUH data
subject tested, yields an error of 95.65%. The worst case EER
never exceeds 50% and for most is below 40% highlighting

Fig. 8. Equal Error Rate curve of i-vector on PhysioNet Subject 5 training
data using a 16 mixture UBM with a resultant EER of 29.7%.

the strength of UBMs to discern specific user channels on both
data sets.

A disparity between the data is highlighted in Figure 8
showing the i-vector EER plot of the PhysioNet Subject 5
training set evaluation. Despite training across three unique
trials, the optimal EER is 29.7% which is in range of error
rates found for trial specific UBMs, Figure 4. The TUH
subjects return i-vectors with EERs at or slightly below 50%
which exceeds the EERs seen for the associated UBM training
and testing data. Even when the results for both data sets on
test data falls within an EER of 20% to 45%, the PhysioNet
data results exceed the TUH data when tested on the training
data.

The results suggest that the feature density of the two sets
differs exposing complications when shifting from speech to
EEG data. The PhysioNet data is hundreds of seconds long
with multiple structured events while the TUH data is thou-
sands of seconds long with minimal unstructured events. A
lack of structure and increased variance from the TUH record-
ings increases the complexity of the UBMs when compared
to the PhysioNet data. The development of robust i-vectors
is feasible, given the PhysioNet results, but the technique
must mature to address the feature complexity, cross-channel
features and dynamic feature-to-noise ratios, present in clinical
EEG data like the TUH data.
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