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Abstract—The Neural Engineering Data Consortium (NEDC) is 
releasing its first major big data corpus – the Temple University 
Hospital EEG Corpus. This corpus consists of over 25,000 EEG 
studies, and includes a neurologist’s interpretation of the test, a 
brief patient medical history and demographic information about 
the patient such as gender and age. For the first time, there is a 
sufficient amount of data to support the application of state of the 
art machine learning algorithms. In this paper, we present pilot 
results of experiments on the prediction of some basic attributes 
of an EEG from the raw EEG signal data using a 3,762 session 
subset of the corpus. Standard machine learning approaches are 
shown to be capable of predicting commonly occurring events 
from simple features with high accuracy on closed-loop testing, 
and can deliver error rates below 50% on a 6-way open set 
classification problem. This is very promising performance since 
commercial technology fails on this data. 

I. INTRODUCTION 
The worldwide EEG market is growing substantially as 

EEGs are increasingly being used in preventive diagnostic 
procedures. The worldwide economic burden for brain-related 
illnesses reached more than $2T/yr. in 2014 ($1T/yr. in the 
U.S. alone). Diagnosis of a neurological disease like epilepsy is 
a life-altering event, impacting a person’s ability to live a 
normal and fulfilling life. Hence, it is not surprising that the 
majority of research has focused on diagnosis of epilepsy and 
stroke. More recently, however, there has been significant 
interest in expanding the application of EEGs to conditions 
such as Middle Cerebral Artery (MCA) Infarct, Posterior 
Reversible Encephalopathy Syndrome (PRES), Alzheimer's 
disease and sleep disorders. Discovering the correlates of these 
conditions in an EEG signal is an open area of research. 

An EEG may also be employed to determine the overall 
electrical activity of the brain, which is used to evaluate 
trauma, drug intoxication or blood flow during surgical 
procedures. Trauma represents an important emerging market 
for EEG technology since there is considerable interest today in 
diagnosing post-traumatic stress disorder (PTSD) in soldiers 
and chronic traumatic encephalopathy (CTE) in athletes. CTE 
in particular might require establishing a baseline EEG prior to 
one’s involvement in contact sports, and monitoring changes 
over long periods of time. This will exceed the capacity of the 
healthcare system to manually interpret EEGs, and create 
additional need for a system capable of high performance 
automatic interpretation. 

The primary output of an EEG test, as shown in Figure 1 is a 
physician’s report. After the recording of a patient’s EEG, it 
can take as long as several weeks for the interpretation of the 
signal by a certified neurologist. Reducing the lag time between 
recording and interpretation can positively impact the quality, 
efficiency (and profitability) of healthcare. As continuous 
monitoring has become more popular, the ability to analyze 
signals in real-time and generate alerts has become increasingly 
necessary. The goal of our research is not to simply generate a 
report automatically, but to identify the events in the signal that 
contributed to the diagnosis. Despite a large body of literature 
on the prediction of a diagnosis, only recently has research on 
low-level event detection appeared [1]. 

The ability to automatically predict life-threatening events from 
EEG signals has been actively researched for the past 40 years. 
Unfortunately, clinical use of such systems is limited due to 
poor classification performance. EEG events are defined as 
critical points in a signal, such as a spike or asymmetric wave 
shape, that correlate with the presence of a particular disease. 
Physicians have indicated that a classification error rate of 5% 
for these EEG events would be acceptable clinical 
performance. Current state of the art systems do not operate at 
this level of accuracy due to a lack of adequate machine 
learning resources and hence are not in widespread use. 
Therefore, NEDC has been developing a large database of 
clinical EEGs [2] collected at Temple University Hospital that 
we believe is crucial for the application of more powerful 
machine learning approaches. 

 
Figure 1. An overview of the EEG interpretation system. The 
primary outputs of the process are a labeled EEG signal and 
an EEG report.  



II. THE TUH EEG CORPUS 
The TUH EEG Corpus is the world’s largest publicly 

available database of clinical EEG data, comprising more than 
25,000 EEG records and over 14,000 patients. It represents the 
collective output from Temple University Hospital’s 
Department of Neurology since 2002. EEG signals were 
recorded using several generations of Natus Medical 
Incorporated’s NicoletTM EEG recording technology. The raw 
signals obtained from the studies consist of recordings that vary 
between 20 and 128 channels sampled at 250 Hz minimum 
using a 16-bit A/D converter. The data is stored in a proprietary 
format that has been exported to EDF with the use of 
NicVue v5.71.4.2530. These EDF files contain a header with 
important metadata information distributed in 24 unique fields 
that contain the patient’s information and the signal’s 
condition. There are additional fields that describe signal 
conditions, such as the maximum amplitude of the signals, 
which are stored for every channel. A complete description of 
this header can be found at the project website [3]. 

The medical record numbers, names, exact dates of birth and 
study numbers were redacted in the headers order to ensure the 
patients’ anonymity. However, information relevant to the 
outcome and interpretation of the EEGs, such as gender, age, 
medical history and medications, was retained.  Selected fields 
from this header that contain important metadata are shown 
below in TABLE 1.  

For every EEG, there is also a report, shown in Figure 2, 
which was generated by a board-certified neurologist. This 
report contains a summary of the physician’s findings (e.g., 
clinical correlation sections) as well as information such as the 
patient’s history and medications. The report also includes 
information about the location of the session (e.g., inpatient or 
outpatient), the type of EEG test (e.g., long-term monitoring or 
standard) and the protocol invoked for the test (e.g., the type 
of stimulation used). The reports have been manually de-
identified so that a patient’s identity remains anonymous. The 
reports are provided as flat unstructured text files. More 
research is needed on the organization and representation of 
these reports. However, we have been able to automatically 
pair EEG event classes with sessions using these reports. 

A distribution of the number of records per year is presented in 
Figure 3. The number of EEGs recorded at TUH has been 
steadily increasing in recent years, and we hope to continue 
augmenting the data as it is collected. Approximately 75% of 
the sessions are standard EEGs less than one hour in duration, 
while the remaining 25% are from long-term monitoring 
sessions. There are about six different formats for the reports 
depending on the year and the type of EEG, though the body of 
the report contains similar information. 

To put the size of this corpus in perspective, the EEG signal 
data requires about 1.8T of storage with a median file size of 
20 Mbytes. The EEG signal data is “pruned” which simply 
means the EEG technician identified sections of the recording 
that were of clinical value and discarded the rest. Even so, the 
amount of data is staggering. For example, if we treat each 
channel of data as an independent signal, there is over 1B 
seconds of data. Though this might seem huge at first, the 
events we are interested in are relatively rare, often occupying 
less than 1% of the recording duration. The number of patients 
experiencing seizures during a session is on the order of several 
hundred. When these sessions are cross-referenced by patient 
medical histories, even this huge amount of data appears small.  

TABLE 1. SELECTED FIELDS FROM AN EDF HEADER. 

Field Description Example 
1 Version Number 0 
2 Patient ID TUH123456789 
4 Gender M 
6 Date of Birth 57 
8 Firstname_Lastname TUH123456789 
11 Startdate 01-MAY-2010 
13 Study Number/ Tech. ID TUH123456789/TAS X 
14 Start Date 01.05.10 
15 Start time 11.39.35 
16 Number of Bytes in Header 6400 
17 Type of Signal EDF+C 
19 Number of Data Records 207 
20 Dur. of a Data Record (Secs) 1 
21 No. of Signals in a Record 24 
27 Signal Prefiltering HP:1.000 Hz LP:70.0 Hz N:60.0 
28 No. Signal Samples/Rec. 250 

 

 
Figure 2. An example of a physician’s EEG Report. 

 
Figure 3. The number of EEG sessions per year. 



III. PRELIMINARY EXPERIMENTS 
An important part of our research on this data has been 

iterating on the definition of EEG events with neurologists. 
This requires a deeper understanding of how EEGs are 
manually interpreted and the translation of this process into an 
algorithm description. After several iterations, we are focusing 
on a 6-way classification: 

(1) Spike and/or Sharp Wave (SPSW): epileptiform transients that 
are typically observed in patients with epilepsy. 

(2) Periodic Lateralized Epileptiform Discharges (PLED): EEG 
abnormalities consisting of repetitive spike or sharp wave 
discharges, which are focal or lateralized over one hemisphere 
and that recur at almost fixed time intervals. 

(3) Generalized Periodic Epileptiform Discharges (GPED): 
periodic short-interval diffuse discharges, periodic long-interval 
diffuse discharges and suppression-burst patterns according to 
the interval between the discharges. Triphasic waves (diffuse 
and bilaterally synchronous spikes with bifrontal predominance, 
typically periodic at a rate of 1-2 Hz) are included in this class. 

(4) Artifacts (ARTF): recorded electrical activity that is not of 
cerebral origin, such as those due to equipment or environment. 

(5) Eye Blinks (EYEBL): common events that can often be confused 
for a spike. 

(6) Background (BCKG): all other signals.  
These classes are very similar to what others have used [4] to 
perform stroke and epilepsy detection. In fact, we have 
replicated state of the art results on these tasks using the 
technology described in this paper. The first three classes are 
information bearing in that they describe events that are critical 
in manual interpretation of an EEG. What primarily 
distinguishes these three classes is the degree of periodicity and 
the extent to which these events occur across channels. 

The last three classes are used to improve our background 
model. Background modeling is an important part of any 
machine learning system that attempts to model the temporal 
evolution of a signal (e.g., hidden Markov models). We let the 
system automatically perform background/non-background 
classification as part of the modeling process rather than use a 
heuristic preprocessing algorithm to detect signals of interest. 
This follows a very successful approach that we have used in 
speech recognition [5]. 

Artifacts and eye blinks occur frequently enough that they 
merit separate classes. The rest of the events that don’t match 
the first five classes are lumped into the background class. 
Hence, it is important that the background class model be 
robust and powerful. Further, the critical aspects of 
performance are related to the sensitivity and specificity of the 
first three classes since these are the events neurologists will 
key on to interpret a session. 

Feature extraction was performed on the data using a standard 
filter bank/cepstral coefficient approach [6]. The overall system 
at present is not extremely sensitive to the core feature set as 
long as they adequately model the spectral range from 
approximately 0.5 Hz to 25 Hz. We use an 8-band filter bank 
analysis that is transformed into a 9-element feature vector that 
includes 8 cepstral coefficients and energy. The latter is 
calculated using a frequency domain approach. 

After extracting features, we have trained a standard hidden 
Markov Model (HMM) for each class [7]. HMMs are a class of 
doubly stochastic processes in which discrete state sequences 
are modeled as a Markov chain and have been used extensively 
to model time series data. Expectation-Maximization (EM) 
algorithm is used to train the models. Figure 4 provides an 
overview of the training procedure. An active learning 
approach is used to bootstrap the system from small amounts of 
data to larger subsets.  

It should also be noted that data preparation is a large part of 
the challenge in processing this clinical data. This involves 
clustering files into the appropriate classes based on 
information automatically extracted from a physician’s report. 
We initially trained our system in a completely unsupervised 
manner using an active learning approach. We then had a small 
amount of data manually labeled by an expert. We carefully 
selected 100 10-second epochs that contained ample examples 
of the SPSW class along with a few GPED and PLED 
examples. We used this data to guide the training process. We 
are in the process of annotating an additional 70 10-second 
epochs to serve as a held-out evaluation set. 

Toward this goal we have also developed a software tool to 
facilitate labeling of the data and review of the machine 
learning output. We refer to this tool as the EEG Annotator. It 
is written in Python based on the PyQt toolkit, and accepts 
EDF files as input. Annotations are stored in a separate text file 
to facilitate interfacing to other software tools. A screenshot of 
the program can be seen in Figure 5. 

 
Figure 4. An overview of our iterative HMM training 
procedure is shown. An active learning approach is used to 
bootstrap the system to handle large amounts of data. 
 

 
Figure 5. A screeenshot of EDF Annotator is shown. The 
colors depict different classes (e.g., red is SPSW). 



TABLE 2. EXPERIMENTAL RESULTS 

  SPSW PLED GPED ARTF EYBL BCKG 
SPSW 38% 8% 27% 9% 11% 7% 
PLED 19% 54% 19% 1% 4% 2% 
GPED 12% 20% 42% 14% 2% 9% 
ARTF 6% 3% 4% 39% 2% 47% 
EYBL 3% 9% 1% 1% 84% 1% 
BCKG 9% 2% 8% 6% 3% 72% 

 

Note that in these preliminary experiments, each channel is 
processed independently. Some events are easily identified by 
looking at behaviors across channels. However, in this study, 
we have restricted ourselves to analyzing each channel 
independently. We are in the process of developing a second 
machine learning module that will post process hypotheses 
from all channels and classify sessions accordingly. This 
module will substantially reduce the false alarm rate [1].  

In TABLE 2 we present a confusion matrix for the HMM-based 
system on the evaluation data. We observe the correct 
recognitions for the three primary event classes (SPSW, PLED, 
and GPED) are above 40% though misrecognitions are also 
about 40%. Fortunately, to be relevant for clinical use it is not 
necessary to detect every spike correctly. It is adequate to 
detect enough of these spikes that a neurologist can quickly 
develop and impression. Of greater concern is a high false 
alarm rate which results in a need to review too much 
erroneous data.  

To put these results in perspective, we have also compared our 
system to Wulsin’s approach using Deep Belief Networks [4]. 
Wulsin et al. used a small proprietary database of clinical EEGs 
that was manually transcribed by two neurologists. Both 
studies used very similar classes though the methodologies for 
modeling non-spike portions to the signals were somewhat 
different. In their study, the performance metric used was the 
Fscore, the harmonic mean of sensitivity and specificity: 

 
  
Fscore = 2 sensitivity  • specificity

sensitivity  + specificity
 (1) 

The highest Fscore reported in [4] is 0.476 while our system 
produced an Fscore of 0.702 for the evaluation data and 0.772 for 
the training data on the TUH EEG Corpus. 

Figure 6 shows a tradeoff between false alarms and detections 
(correct recognitions). We can change the operating point along 
this curve by simply modifying a threshold on the likelihood 
values of the most likely class. Clinicians prefer a low false 
alarm rate since that reduces the amount of time spent 
reviewing the data and can increase their productivity. Based 
on discussions with Temple University Hospital neurologists, 
our target for the detection rate on the three primary event 
classes is 95% and our target for the false alarm rate is 5%. 

Note that these results were generated using closed-set testing 
since we have a very limited amount of transcribed data. 
Informal analyses of open-set results at this level of 
performance indicate they are comparable. Once the held-out 
data is transcribed we will be in a better position to do open-set 
testing. It is encouraging that confusions between the three 
primary event classes and the three background event classes 
are relatively small. 

IV. SUMMARY 
In this paper, we have introduced the TUH EEG Corpus, 

which consists of over 25,000 EEG sessions from over 14,000 
patients. The data spans over a decade of clinical studies, and 
includes a rich library of metadata, patient histories and 
physician’s interpretations. It is ideal for large-scale machine 
learning experiments. We expect it will have a major impact 
on the development of clinical tools to automatically interpret 
EEGs. We expect the complete corpus to be released by 
Spring 2015, and will be available at www.nedcdata.org. 
Preliminary releases have been available from the project web 
site since February 2014. Feedback on the data is encouraged. 

Preliminary results presented on a pilot corpus of 3,762 
sessions demonstrated that it is possible to predict some 
annotations directly from the data using unsupervised and 
partially-supervised learning techniques. Our HMM-based 
system was able to successfully detect SPSW, GPED and 
PLED events. A detection rate of 76% was achieved with a 
false alarm rate of 12%. The background and artifact modeling 
performed well. Event detection overall was promising given 
that only single channel processing was performed.  

We expect to continue improving performance by 
incorporating a postprocessing scheme that pools outputs 
across channels and integrates features that incorporate both 
short-term and long-term spectral information. Increasing the 
temporal context and correlating channel identities with events 
will also greatly improve our ability to differentiate SPSW 
events from GPED and PLEDs. Additional levels of 
postprocessing will be used to determine epoch labels. 
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Figure 6. The tradeoff between false alarms and correct 
detections is depicted for a baseline system on the TUH EEEG 
Corpus. A system with a low false alarm rate is much 
preferred over a high detection rate. 
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