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Abstract 
Speech recognition systems have historically used context-
dependent phones as acoustic units because these units allow 
linguistic information, such as a pronunciation lexicon, to be 
leveraged. However, when dealing with a new language for 
which minimal linguistic resources exist, it is desirable to 
automatically discover acoustic units. The process of 
discovering acoustic units usually consists of two stages: 
segmentation and clustering. In this paper, we focus on the 
segmentation portion of this problem. We introduce a 
nonparametric Bayesian approach for segmentation, based on 
Hierarchical Dirichlet Processes (HDP), in which a hidden 
Markov model (HMM) with an unbounded number of states is 
used to segment the utterance. This model is referred to as an 
HDP-HMM. We compare this algorithm to several popular 
heuristic methods and demonstrate an 11% improvement in 
finding boundaries on the TIMIT Corpus. A self-similarity 
measure over segments shows an 88% improvement compared 
to manual segmentation with comparable segment length. This 
work represents the first step in the development of a speech 
recognition system that is entirely based on nonparametric 
Bayesian models.  

Index Terms: nonparametric Bayesian models, hierarchical 
Dirichlet processes, speech segmentation 

1.  Introduction 
Acoustic unit selection is a critical issue in many speech 
recognition applications where there are limited linguistic 
resources or where limited training data is available for the 
target language. For example, recently IARPA’s Babel 
program  [1] sponsored a competition to create a speech to text 
system in a mystery language in one week of time using very 
limited resources. Though traditional context-dependent phone 
models perform well when there is ample data, automatic 
discovery of acoustic units offers the potential to provide good 
performance for resource deficient languages with complex 
linguistic structures (e.g., African click languages). 

Most approaches to automatic discovery of acoustic 
units  [2]- [4] do this in two steps: segmentation and clustering. 
Segmentation is accomplished using a heuristic method that 
detects changes in energy and/or spectrum. Similar segments 
are then clustered using an agglomerative method such as a 
decision tree. Advantages of this approach include the 
potential for higher performance than that obtained using 
traditional linguistic units, and the ability to automatically 
discover pronunciation lexicons.  

In this paper, we propose the use of a nonparametric 
Bayesian model (NPBM) for segmentation. In this formulation 
of the problem, the number of units (or segments) is unknown. 
One approach is to exhaustively search through a model space 
consisting of many possible parameterizations. An alternative 

approach is based on a nonparametric Bayesian statistical 
model  [5] [6] in which the model complexity can be inferred 
directly from the data. Segmenting an utterance into acoustic 
units can be approached in a manner similar to that used in 
speaker diarization, where the goal is to segment audio into 
regions that correspond to a specific speaker. Fox et al.  [7] 
used one state per speaker and demonstrated segmentation 
without knowing the number of speakers a priori. Here, we 
demonstrate that a similar approach can be used to segment an 
utterance into acoustic units. 

Our approach is demonstrated in Figure 1 for an example 
utterance from the TIMIT Corpus  [8]. The segmentation is 
performed using an extension of a hidden Markov 
model (HMM) with an unbounded number of states and an 
unbounded number of mixture components. This model is 
known as an infinite HMM or more recently a Hierarchical 
Dirichlet Process HMM (HDP-HMM)  [7]. It uses a 
hierarchical Bayesian model to define an NPBM  [9]. 

Relation to Prior Works: We propose a new algorithm 
for segmentation of speech based on an HDP-HMM  [7]. 
Previously a dynamic programming method was applied that 
incorporated a heuristic stopping criterion  [2]- [4]. Recently, 
Lee & Glass  [10] proposed an NPBM for unsupervised 
segmentation of speech. A Dirichlet Process Mixture (DPM) 
model was used. In order to obtain phoneme-like segments, a 
3-state HMM was used to model each segment. A Gibbs 
sampler was employed to estimate the segment’s boundaries. 
In our model, each segment is modeled using one state of an 
HMM. We use HDP-HMM to discover the optimal number of 
segments. Note that using a parametric HMM is not possible 
since the number of segments is unknown. 

2.  Hierarchical Dirichlet Processes  
Hidden Markov models (HMMs) are a class of doubly 
stochastic processes in which discrete state sequences are 
modeled as a Markov chain  [11]. We can denote a continuous 
distribution HMM based on Gaussian mixtures as λ = (A,B,π), 

 

Figure 1: Segmentation of a speech utterance produced using 
the proposed algorithm is shown by overlaying the duration 
and index of each unit on the waveform. The height of each 
rectangle overlay simply indicates the index of that unit.



 

Figure 2: A graphical representation of an HDP-HMM is
shown in which st, mt and ot represent state, mixture
component and observation respectively. 

where A represents the transition probability matrix, B 
represents the output distributions and π represents the initial 
state probabilities. The state of a Markov chain at time t is 
denoted by st. Observations are conditionally independent 

given st and are denoted by ( )| , ~ ,o s m b s mt t t t tθ  where st and 

mt are the state and mixture component indices respectively, 
and θst ,mt

 represents the distribution’s parameters for state st 

and mixture component mt. The transition probability from st 

to the next state is denoted by s
t

| s
t−1

~ ast ,st−1
, which implies 

the current state is only a function of the previous state.  

A Dirichlet process (DP)  [12] [13] is a discrete 
distribution that is composed of a weighted sum of impulse 
functions. Although there are many different representations 
for a DP, we will focus here on two sets of parameters related 
to the discrete distribution: locations of the impulse functions 
and their corresponding weights. The impulse functions are 
often referred to as atoms. For example, in a binomial 
distribution, there are exactly 2 atoms, x=0 and x=1, and two 
corresponding weights, P(x=0) and P(x=1). A DP, on the other 
hand, consists of an infinite number of atoms and 
corresponding weights, though the sum of the weights of these 
atoms is constrained to be one. 

The distribution from which these atoms can be sampled 
is known as the base distribution. Weights for these atoms can 
be generated using a process referred to as stick breaking  [14]: 

                                 (1) 

We initialize the recursion by drawing a sample, c1, in the 
range [0,1], from a Beta distribution in which ν is a 
concentration parameter. We break the remaining part of the 
stick, of length 1-c1, by sampling from another Beta 
distribution. Each successive break, ck, represents a weight for 
a new atom. A small ν means the low order ck would be much 
larger on the average than the higher order terms. Hence, ν is 
one way we control the complexity of the model. This stick-
breaking process is also known as the Griffiths, Engen and 
McCloskey (GEM) model  [15]. 

For reasons that will become clear shortly, we desire to 
have a collection of DPs that share a set of atoms associated 
with a base distribution. Specifically, we want these DPs to 
share the locations of the impulse functions but not the 
weights. For example, suppose we want to model individual 
phones using a collection of features. We can employ a DP to 
model each phone independently much like we would use a 
standard Gaussian mixture model. Instead of allocating a 
number of mixture components to each phone, each atom in 
our DP would represent parameters associated with one 
mixture component (e.g., means and variances). The weight of 
the atom would correspond to the mixture weight. 

Since each phone in a pure DP approach is modeled 
independently, no atoms would be shared between them. If we 
desire to share parameters, we can constrain the phones to use 
the same set of atoms. This structure, in which we use a 
common DP for a base distribution, and then model each 
phone using a DP that shares atoms with other DPs, is known 
as an Hierarchical DP (HDP)  [9]. Note that in an HDP, we still 
recompute the weights of each shared atom. 

An HDP-HMM  [7] [9] [16] is an HMM with an 

unbounded number of states. An overview of an HDP-HMM 
is given in Figure 2. In a typical ergodic HMM, the number of 
states is fixed so a matrix of dimension N states by N 
transitions per state is used to represent the transition 
probabilities. In an HDP-HMM, the transition matrix is 
replaced by an infinite, but discrete transition distribution, 
modeled by an HDP for each state. This lets each state have a 
different probability distribution for its transitions while the 
set of reachable states would be shared among all states. 

One side effect of this model is that it does not 
differentiate between different states. Therefore the probability 
of self-transition would be small. As a result an HDP-HMM 
has a tendency to create many redundant states and switch 
rapidly amongst them. This implies we will have less data per 
state for parameter estimation (e.g. the mean and covariance of 
the emission distributions) and therefore the estimates would 
be less reliable. This has been mitigated by introducing a 
sticky parameter, κ, to the definition of an HDP-HMM (known 
as a sticky HDP-HMM) that encourages the probability of a 
self-transition by introducing a bias term (delta function) 
favoring the current state  [7] [9]: 
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The state, mixture component and observation are 
represented by st, mt and ot respectively. The indices j and k 
are indices of the state and mixture components respectively. 
The base distribution that links all DPs together is represented 
by c and can be interpreted as the expected value of state 
transition distributions. The transition distribution for state j is 
a DP denoted by aj with a concentration parameter η. Another 
DP, Ψj, with a concentration parameter σ, is used to model an 
infinite mixture model for each state (sj). The distribution H is 
the prior for the parameters θkj. If we want the posterior 
distribution over the parameters to remain in the same family 
as the prior, then H should be chosen to be a conjugate prior to 
the observation likelihood. Since the likelihood is a 
multivariate normal, we use a normal inverse Wishart 



distribution for H. 

The final ingredient in this model is an inference 
algorithm. Inference algorithms are used to infer the values of 
the latent variables, in this case st and mt. Equation (2) 
describes a generative model. There are several popular 
approaches for inference including the block sampler  [7] used 
in this work. The block sampler employs a Markovian 
structure to improve its performance. It has been shown that if 
all states are sampled at once, the inference algorithm will be 
much more computationally efficient. In the block sampler a 
variation of the forward-backward procedure is used to sample 
the state sequence in one step. A block sampler needs a fixed 
truncation level, Ks, to be specified in advance, representing 
the maximum number of states that could be found. 

It should be noted that the resulting algorithm is different 
from a parametric Bayesian HMM because it induces a sparse 
subset of the Ks possible states, while a parametric model 
always finds Ks states. Similarly, a fixed truncation level, Km, 
is used for the number of mixture components per state. In 
practice, if both Ks and Km are sufficiently large, the results 
will be the same as if we use an infinite truncation level.  

In our model, each state of the HMM represents a 
segment. Since an HDP-HMM has an unbounded number of 
states, the model can infer the number of segments 
automatically from the data.  Modeling each segment with a 
state of an HMM means that the algorithm segments speech 
into semi-stationary parts. 

3.  Experiments 
To evaluate the proposed algorithm, we used the TIMIT 
Corpus  [17] because of the existence of highly accurate 
manual segmentations. Each utterance was converted into a 
standard 39-dimensional MFCC feature stream (12 MFCC 
coefficients plus energy as well as the first and second 
derivatives) computed using 10 ms frames. Next, L 
consecutive frames of data are averaged to produce one output 
frame of features per L frames. This averaging process is done 
to ensure that segments have a minimum duration of L frames. 
Typically, L varies from 1 to 3.  

In an HDP-HMM model, there are several parameters 
that must be adjusted, including the truncation level for the 
number of states (Ks) and the truncation level for the number 
of mixture components (Km) per state. These should be set to 
be larger than the expected number of states and mixture 
components per state but not too large since computational 
complexity increases quadratically with Ks and Km.   

To measure the performance of the segmentation we 
followed the approach used in  [10] with a tolerance window of 
20 ms. In this approach the discovered boundaries of the 
segments are compared to the manually segmented reference 
boundaries. The number of co-occurrences of segments 
boundaries and phoneme boundaries is called recall. The 
percent of declared boundaries that coincide with phoneme 
boundaries is called precision. A single numeric score is 
referred to as the F-score and defined as: 

Recall Precision
F-score 2  .

Recall + Precision

×
= ×

   
(3)

                      
A comparison of our proposed method to other state of 

the art systems is shown in Table 1. The first row represents a 
system that performs unsupervised segmentation with no prior 
information about number of segments for each utterance. The 
second row represents a system that implements a semi-

supervised approach. The third row provides results for a 
recently proposed nonparametric Bayesian approach  [10].  

The HDP-HMM algorithm performs particularly well on 
recall, which implies that it is finding boundaries that better 
match the reference phoneme boundaries. The improvement in 
recall is over 11% even though; our approach unlike  [19] is 
completely unsupervised. The precision is lower, however, 
which means there are slightly more false alarms. This is not 
unexpected since its determination of acoustic units is driven 
by the complexity of the data.   

The quality of the segments can be measured using a 
similarity score, defined as: 
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(4) 

This score, S, is an indicator of consistency. It has two 
main components: (1) s1 is the in-class similarity score and is 
defined as the average over the correlation between different 
instances of segments with identical labels; (2) s2 is the out-of-
class dissimilarity score. For example, for class i, the number 
of in-class instances are M. To compute s1, we need to average 
over all instances of class i and therefore N is equal to M-1. To 
calculate s2 we correlate examples in class i to all other data 
points (with classes not equal to i) and therefore N is equal to 
the total number of instances minus M. The quality of 
segmentation is higher when both numbers are closer to one. It 
should be noted that the similarity score functions much like a 
likelihood score − it increases monotonically with an increase 
in the number of classes. Therefore, for a meaningful 
comparison, the number of classes being compared for two 
algorithms must be the same (defined as the number of 
segments with same identity) or equivalently the average 
length of segments produced by the two algorithms should be 
comparable. 

In Table 2, we demonstrate segmentation performance. 
Nc is the number of discovered classes. Similarity scores for 
the manual segmentations and the proposed algorithm are 
shown in the last two columns of Table 2. Each cell consists of 
a pair of numbers corresponding to s1 and s2. The number of 
classes for the manual segmentations is fixed to 61, the 
number of phones used to mark the corpus. For HDP-HMM, 
Nc varies between 23 and 139. 

Note that increasing the number of classes results in an 
increase in the in-class similarity scores, but the out-of-class 
dissimilarity scores remain relatively constant. If we consider 
the last row of the table, we observe that the number of classes 
(51) is roughly comparable to the number of phones (61). In 
this case the average length of discovered segments is slightly 

Table 1.  Segmentation performance of HDP-HMM improves 
recall while maintaining an acceptable precision. 

Algorithm Recall Prec. F-score
Dusan & Rabiner (2006)  [18] 75.2 66.8 70.8

Qiao et al. (2008)  [19] 77.5 76.3 76.9

Lee & Glass (2012)  [10] 76.2 76.4 76.3

HDP-HMM 86.5 68.5 76.6



longer than standard phonemes, yet the similarity score for our 
algorithm is 88% larger (0.83 vs. 0.44). This means segments 
discovered by our algorithm are more self-consistent and 
therefore can be modeled using simpler models.   

 We have also performed a qualitative analysis of our 
proposed algorithm. In Table 3, excerpts from automatically 
discovered lexicons are shown for four different parameter 
configurations. This data was the result of processing 
utterance SA1 for speakers FALK0 and FCJF0. The labels 
shown are arbitrarily assigned during the discovery process. 
Though we don’t expect the value of the label to be repeated 
for a different set of data, we can see that there is a general 
similarity in the sequence of labels for similar words spoken 
by different speakers. For example, word “all” in the first row 
of the table is represented by segments “60-54-80-41” for 
FALK0 and “29-54-80-41” for FCJF0. 

Further analysis revealed that the segments 60 and 29 are 
also acoustically close. The normalized distance between the 
mean of the Gaussian distributions that represent each segment 
is 11.6 while the average distance between two arbitrary 
segments is 41.1. This indicates that segments 29 and 60 are 
accounting for different pronunciations of the initial phone; 
e.g. it is expected further clustering step merge these two 
segments into one cluster.  

Segments derived using the proposed algorithm follow an 
N-gram statistical structure. For example, in the second row of 
Table 3, segment 79 always follows segment 18, and 
segment 12 always follows segments 70, 79 and 68, which are 
very close in terms of acoustic distance. This suggests that the 
discovered segments are similar to phoneme like units. 

The first two experiments use a single Gaussian emission 
for each state (Km=1). The last two experiments use Gaussian 
mixtures (Km=5) where the maximum number of components 
per state is Km. The flexibility added by the mixture model 
improves the consistency of the segmentation. For example, 
by comparing the word “she” for the first and third 
experiments in Table 3, we observe that the segmentations for 
both speakers are much more similar in the third experiment 
(Km=5) than the first experiment (Km=1). Recall that in this 
model the number of mixture components per state can vary, 
and the number of derived classes grows only as needed based 
on the complexity of the data. Hence, the model essentially 
adapts to the data. 

Figure 1 demonstrates that the boundaries found by HDP-
HMM approximately coincide with boundaries found from 
manual segmentation, supporting the results reported in 
Table 1. However, in some cases the discovered segments 
cover several phonemes (e.g., /aa r/) while in other instances a 

single phoneme is divided into more than one segment (e.g., 
/s/). This splitting does not violate the phoneme boundaries 
and can be interpreted as a finer representation of the 
phoneme. This is supported by the fact that for a comparable 
number of classes (e.g. segment identity) the similarity score 
is higher for the automatically discovered segments. This 
suggests that the splitting/merging phenomenon inherent to the 
HDP-HMM improves the segmentation process and we expect 
the resulting segments to generate a set of acoustic units that 
represent the data more consistently.  

4.  Conclusions 
We have investigated the application of an HDP-HMM model 
to segmentation of speech. It was shown that this segmentation 
model produces meaningful and consistent results. Discovered 
boundaries generally coincide with the boundaries for 
manually segmented phonemes. It was shown that for a 
comparable number of classes (e.g. phonemes), the  proposed 
algorithm  improves segmentation self-similarity score by 
more than 88% over the manual segmentation  despite the fact 
that average length of automatically discovered segments are 
slightly longer than average length of phonemes. Moreover, 
we have shown that our algorithm improves recall rate over 
other state of the art algorithms by more than 11%.  

Future research will be focused on clustering segments 
produced by HDP-HMM and automatic generation of a 
corresponding lexicon. This step can also be implemented 
using a nonparametric Bayesian approach. This is the last 
crucial step in achieving our goal of a system based entirely on 
nonparametric Bayesian approaches.  
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Table 2. Performance of the HDP-HMM approach to 
automatic discovery of acoustic units on TIMIT is shown. The 
in-class similarity scores for the proposed algorithm are 
significantly higher than those for the manual segmentations. 
However, out-of-class dissimilarity score is almost the same. 

Experiment Nc Manual HDP-HMM 
Ks=100, Km=1, L=1 70 (0.44,0.72) (0.82,0.73)

Ks=100, Km=1, L=2 33 (0.44,0.72) (0.77,0.73)

Ks=100, Km=1, L=3 23 (0.44,0.72) (0.75,0.72)

Ks=100, Km=5, L=1 139 (0.44,0.72) (0.90,0.72)

Ks=100, Km=5, L=2 73 (0.44,0.72) (0.87,0.72)

Ks=100, Km=5, L=3 51 (0.44,0.72) (0.83,0.72)

Table 3. Samples of the lexicons are shown for several 
parameter configurations. The labels in the third and fourth 
columns are arbitrarily assigned to acoustic units. There is a 
reasonable amount of consistency between words with 
similar phonetic transcriptions. 

Exp. Word FALK0 FCJF0 
Ks=100
Km=1
L=1 

She 81-2-7-41 27-67-40-41-68 

Wash
45-25-29-54-59-30-

94-81 
41-45-25-29-54-73-8-

4-27-81-17 
Water 29-54-59-28-71-72-98 29-54-28-98 

All 60-54-80-41 29-54-80-41 
Ks=100
Km=1
L=2 

She 60-18-79-70 27-67-40-41-68 

Wash
75-10-51-91-52-60-61 75-10-51-91-19-54-

60-61 
Water 10-51-3-99 10-51-3 

All 10-51-70 10-51-70 
Ks=100
Km=5
L=1 

She 35-75-43-89 35-76-43-89 

Wash
70-29-48-47-88-7-

100-35-41 
70-48-47-88-7-15-6-

35-41 
Water 48-47-88-73-50-57-45 47-88-39-47 

All 25-87-7-43 47-30-43 
Ks=100
Km=5
L=3 

She 24-6-86 17-38-6-30-58 

Wash
43-26-30-73-24 5-43-26-30-76-10-17-

59-78 
Water 43-26-30-50-69 26-50-80 

All 26-30-69-55 26-69 
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