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2.  DIRICHLET PROCESS MIXTURE MODELS 

The traditional solution to determining the underlying 
distribution of some observed data is to assume a finite 
exponential mixture model and infer the parameters. 
However, the number of components (clusters) must be 
determined using computationally expensive model 
selection methods  [1] [2]. Results have been marginal at best 
and the clusters often do not capture the underlying 
characteristics of the data, but rather simply minimize some 
global distortion measure. An alternative solution that 
attempts to preserve underlying modalities is the Dirichlet 
Process Mixture (DPM) model.  

The general form of a K-component mixture model is:  

( )1 2
1

| , , , , ( | )
K

K k k
k

P x f xπ θ θ θ π θ
=

… =   .             (1) 

In this formulation, kπ are the mixing proportions and must 

be positive and sum to one, f is usually a parametric 

distribution (i.e. Gaussian) with parameters kθ . The finite 

mixture model can be expressed as a hierarchical model  [1]: 

xi |{θ k} ~ f (x |θi )

θi ~ G

G(θ ) = π kδ(θ ,θk
k=1

K

 )

π ~ Dir(
α
k

,...,
α
k

)

θk ~ H   .

                                 (2) 

In this formulation α is pseudocount hyper-parameter of 
Dirichlet priors. H  is the prior distribution over the 
parameters kθ and δ is the Kronecker delta function.  For a 

Gaussian mixture model, { , }k k kθ = μ Λ  where kμ is the 

mean vector and kΛ is the covariance matrix. H is chosen to 

be the conjugate prior of f . For a Gaussian distribution it 

would be a normal-inverse-Wishart distribution. 
It can be shown  [1] [2] that when k → ∞, 

G ~ DP(α,H )  would be a Dirichlet process (DP) with a 

base distribution of H and a concentration parameter α . 
One of the most important properties of G  is its discrete 
nature that results in the clustering property of a DP. 

The predictive distribution for a DP is given by [1]:  

1 1
1

1
( | ,..., , , ) ( , ))

K

N N k k
k

P H H N
N

θ θ θ θ θ θ+
=

 = α = α + δ α+  
   (3) 

In this formulation N is the total number of observations and
Nk

 is the number of previous observations for cluster k . It 

states that the probability of assigning a new observation to 
cluster k  is proportional to its size and the probability of 

initiating a new cluster is proportional to α .  
Direct computation of the posterior probability in  [3] is 

intractable; therefore some kind of approximation should be 
used. The most popular approaches are based on Monte 
Carlo Markov chain (MCMC) methodologies and 
particularly Gibbs Sampling methods  [1] [2]. However, 
MCMC based methods can be slow to converge and cannot 
be used in large-scale problems  [1] [2] [4]. A different class 
of alternative approaches is based on variational inference, 
in which we recast the inference problem in terms of 
optimization  [8] and then relax the optimization problem to 
obtain a tractable solution. Mean-field algorithms, which 
restrict the variational distribution to a factorization model, 
have been used in inference from DPM  [4] [8]. 

In variational inference, the posterior probability 
( | )P Z X  is approximated with an arbitrary function ( )q Z . 

In other words, because the exact form of ( | )P Z X  is not 

known, an approximation is assumed. In the case of mean-
field algorithm this approximation is also factorized. The 
log marginal probability is given by  [8]: 

 
ln P(X ) = L(q) + KL(q || p)

L(q) = q(Z )ln
P(X ,Z )

q(Z )









dZ

KL(q || p) = − q(Z ) ln
P(Z | X )

q(Z )









 dZ

q(Z ) = qi (Zi )
i=1

M

∏ .

                      (4) 

The goal of optimization problem is to maximize the lower 
bound L(q) or equivalently minimize the Kullback–Leibler 

(KL) divergence with respect to ( )q Z . It has been shown 

that the general solution to this optimization problem 
follows the form of [9]: 

*ln ( ) ln ( , )i i j j
i j

q Z P X Z q dZ const
≠

= +∏                    (5) 

The above expression does not give an explicit 
closed-form solution; instead it provides the means to obtain 
the solution iteratively. Because of the convexity of the 
bound, the convergence is guaranteed  [8]. However, it might 
converge to a local solution. In  [4], the authors used a 
truncated stick-breaking representation for the variational 
distribution. One of the downsides of this approach is that 
variational families are not nested over truncation level 
T  [10] and as a result this must be optimized.  

This issue is addressed using an accelerated variational 
Dirichlet process mixture (AVDP) algorithm  [10] that can 
handle extremely large data sets. In  [11] two other 
extensions of the variational inference named collapsed 
variational stick-breaking (CSB) and collapsed Dirichlet 
priors (CDP) have been introduced. CSB is based on 
stick-breaking representation, but the difference here is to 
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