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The unique characteristics of the military and aviation 
environments make war fighters, pilots, and air traffic 
control personnel particularly susceptible to fatigue. En-
vironmental factors such as movement restriction, poor 
airflow, low light levels, background noise, and vibration 
are known to cause fatigue (Mohler, 1996). In addition, 
the introduction of advanced automation has changed the 
nature of the job for these individuals. “Hands-on” activi-
ties have been replaced by greater demands on the crew 
to perform vigilant monitoring of automated systems; a 
task that people find tiring if performed for long periods 
of time (Colquhoun, 1976). Personnel operating at unac-
ceptable levels of cognitive performance present a danger 
to their mission, to themselves, and to their work team.

An analysis of NASA’s Aviation Safety Reporting 
System (ASRS) revealed that 3.8% of air transport crew 
member error reports were directly associated with fa-
tigue (Lyman & Orlady, 1981). However, when factors 
related to fatigue are considered, such as inattention or 
miscommunication, the number increases to 21.1%. Fa-
tigue also results in an increase in what a person might 
consider acceptable risk in an attempt to avoid additional 

effort (Barth, Holding, & Stamford, 1976; Shingledecker 
& Holding, 1974).

The ability to quickly and unobtrusively monitor an 
airman’s or soldier’s level of alertness prior to and during 
the undertaking of mission-critical activity would provide 
commanders with critical information regarding person-
nel assignments, quite possibly save lives, and increase 
the likelihood of mission success. Unfortunately, there are 
no cognitive assessment tests that have been proven to be 
effective in the field under conditions of high stress and 
severely limited time.

In this article we will describe and evaluate the applica-
tion of a speech-based approach to estimating a speaker’s 
level of fatigue. Using the voice characteristic metrics that 
are necessary in the implementation of most automatic 
speech recognition (ASR) software algorithms, we quan-
tify the change in speakers’ voice quality as they become 
fatigued. These changes are compared to widely accepted 
empirical and model-based measures of fatigue. The next 
section discusses the physiology of speech production as 
an introduction to our approach and includes previous at-
tempts to relate voice characteristics to fatigue.
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Human Speech Production and Its Association 
With Fatigue

Recognizable speech is produced by a continuous ad-
justment of the resonating characteristics of the vocal 
tract. This system consists of an excitation region (lungs, 
diaphragm, and vocal folds) and a filter that is adjusted by 
changes in the position of the pharynx, tongue, lips, jaw, 
and soft palate.

The production of speech sounds is a process that re-
lies on precise interactions between the sensory and motor 
systems. Control of the voice articulators is done through 
a biofeedback process involving the sensing and monitor-
ing of the vibration of the vocal folds through the sound 
and feeling that they create. With increasing fatigue or 
alcohol-induced impairment, this system is disrupted. 
Different speech-based manifestations of this disruption 
have been reported by a number of researchers. Previous 
work associating changes in voice with fatigue has gener-
ally focused on discrete characteristics of the speaker’s 
voice. These include, pitch and word duration (Whitmore 
& Fisher, 1996) and the timing between articulated sounds 
(Vollrath, 1994). Changes in voice spectral parameters 
have been associated with alcohol-related impairment 
(Brenner & Cash, 1991) and hypoxia (Saito et al., 1980). 
The significant effects of circadian influences on voice 
characteristics have been observed in a number of studies 
(Roth et al., 1989; Whitmore & Fisher, 1996).

In our analytical procedure, we monitored the organized 
collection of sounds of the International Phonetic Alphabet 
(IPA), a listing of 41 phones from which all English words 
are comprised. In this manner, identical words need not be 
present in the recorded or “online” vocalizations, and more 
subtle changes may be detected compared to whole word 
analysis. Quantified speech signals using metrics that are 
representative of the entirety of the speaker’s voice were 
also utilized. This process is described in the next section.

Quantification of Voice
Mathematically, the speech signal consists of a convolu-

tion of the excitation waveform with the filter description 
in the time domain or by a multiplication of the transfer 
functions of the two regions in the frequency domain. It 
is possible to process the recorded speech signal [S(ω)] in 
a manner that will separate the isolated filtering effects 
[F(ω)] from the excitation signal [E(ω)]. In this process, 
the spectral characteristics of the speech signal are ob-
tained and a logarithm of the resulting amplitude is cal-
culated. This provides a computed measure from which 
excitation and filter components are separated, and can be 
seen in Equation 1.

 log[S(ω) 5 log[E(ω)] 1 log[F(ω)]. (1)

The resultant log magnitude spectrum is then trans-
formed back to the time domain using a discrete Fourier 
transform. This process ultimately results in the forma-
tion of a discrete (and manageable) number of coefficients 
(called cepstrum coefficients) that represents separate 
filter and excitation signals in the time domain. It is im-
portant to note that the entire speech production process 
is now characterized by only these few cepstrum coeffi-

cients. Isolation of the spectral coefficients from either 
the excitation or filter sections is accomplished by the re-
moval of the irrelevant cepstrum coefficients followed by 
another conversion to the frequency domain.

From this discussion, the entire human speech produc-
tion process may be reduced and described by a manage-
able number of coefficients. Thereby, instead of tracking 
all of the fatigue-related changes in specific vocal met-
rics, such as pitch or duration, we can track changes in 
the entire speech production system with the analysis of 
these coefficients. Our developmental software calculates 
36 mel-frequency cepstrum coefficients (MFCCs) com-
prised of 12 cepstral coefficients (MFCC 1–MFCC 12) 
and their first and second time derivatives. From this point 
we will refer to these 36 components as the voice vector.

These results were achieved by using speech recogni-
tion software developed for this project by the Institute for 
Signal and Information Processing (ISIP) at Mississippi 
State University. As depicted in Figure 1, this software 
calculates 12 cepstral coefficients along with the first and 
second derivatives (the Voice Vector). This voice charac-
terization capability was then used to analyze the experi-
mental data described in the following section.

Figure 2 illustrates how the voice vector of a speaker 
had changed over a 4-day period of the sleep restriction. 
This example represents the voice vector generated by 
a single subject’s utterance of the sound “t.” The legend 
identifies the correlation coefficients for the voice vector 
at 12, 39, and 78 h awake with the voice vector at the onset 
of testing (Trial 1 at 12 h awake).

ExPErImEntAl DAtA

The data provided for this study consisted of 296 speech 
trials acquired from 31 normal talkers from three separate 
experimental protocol test conditions:

Group 1 (FAA Group)
Six nonmedicated subjects reciting 31 unrelated words 

every 6 h over a period of 34 h of sleep loss.
As part of a larger FAA study that involved a 34-h period 

of sleep deprivation (Nesthus, Scarborough, & Schroeder, 
1998), subjects were asked to recite a list of 31 words dur-
ing 6 test times (10:00 a.m., 4:00 p.m., 10:00 p.m., 4:00 a.m., 
10:00 a.m., and 4:00 p.m.). The test times were selected to 
represent circadian high and low points in alertness and per-
formance. Voice was recorded using a Digital Audio Tape 
(DAT) recorder (TASCAM Model No. DA-P1) and a hand-
held microphone. Also measured during these test times 
were sleep onset latencies (SOL), representing an objective 
method for determining sleepiness. This is described in the 
next section. Between test sessions, these subjects partici-
pated in low arousal activities such as reading, watching TV, 
and schoolwork but not allowed to sleep.

Group 2 (Air Force Group)
Nine medicated and eight placebo subjects recited eight 

fixed phrases every 3 h during 66 h of testing. The ini-
tial data collection occurred at 1800 h on Day 1. Given 
a wakeup time of 0600 h, each subject experienced ap-
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proximately 78 h of restricted sleep by the end of testing 
(1200 h on Day 3).

The objective of this effort was to evaluate the efficacy 
of modafinil for sustaining alertness in personnel involved 
in sustained field operations. All participants were males 
between the ages of 18 and 34 years.

Participants hiked approximately 22 miles during the 
first two days of the field event and then bivouacked for 
the remaining 24 h of the study. While traveling the route, 
participants performed 10 min of tests every 3 h. This 
test-block consisted of several simple cognitive tests (the 
ARES test battery) performed on a personal digital assis-
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tant (PDA) palmtop computer (Tungsten T), a subjective 
sleepiness check (the Stanford Sleepiness Scale), a fatigue 
questionnaire (the Sustained Operations Assessment Pro-
file or SOAP), and a mood questionnaire (Profile of Mood 
States or POMS). Every 6 h along the route there was a 
checkpoint during which the normal 10-min test block was 
performed along with additional tests, including voice. 
Voice was also recorded on the PDA using that device’s 
voice memo capability. Participants were not allowed to 
sleep during the first night en route and were only allowed 
a 2-h sleep period (0000–0200 h) during their second and 
third nights on the trail.

Group 3 (Creare Group)
Eight subjects recited eight fixed phrases every 2 h dur-

ing a normal workday.
These volunteers were obtained from the Creare Inc. 

employee population. Starting with their arrival at work 
(between 7 and 8 a.m.), self-administered tests were 
conducted approximately every two h until the end of 
their workday (between 5 and 6 p.m). Total time awake 
for each subject was calculated and recorded based upon 
their reported wake up times on the day of testing. Dur-
ing these tests, the volunteers read a series of phrases into 
the same model PDA used for Group 2. Between tests the 
subjects maintained normal work activities (office and 
laboratory).

The Speech Recognition Software (SRS) described 
in the previous section was used to process the recorded 
speech samples into the 36-component voice vectors, as-
sociated with the speech phones contained within each 
sample. These voice metrics were analyzed to determine 
the degree of association between the speaker’s measured 
and estimated levels of fatigue. Figure 3 illustrates this 
process.

Our initial analysis revealed that the individual MFCC 
component most sensitive to fatigue varied from speaker 
to speaker. As such, comparisons of individual voice vec-
tor components would not generalize across a population 
of speakers. Recalling that speech recognition software 
can reliably recognize specific sounds spoken by a wide 
range of speakers by analyzing the entire voice vector, a 
correlation coefficient was calculated between the voice 
vector at Trial 1 and that obtained during the trial of inter-
est. We call this metric the Voice Correlation or Vc. In 
Figure 2 we showed a speaker’s voice 27 waking hours 
after an initial utterance (12 h awake vs. 39 h awake) had 
changed (Vc 5 0.82); however, it was much closer to the 
“rested state” voice than to the utterance after 66 h (Vc 5 
0.19) which compares voice at 12 h awake with that at 
78 h awake. Note that from this point on, the term Vc (for 
Voice Correlation) will be used instead of the generic 
correlation coefficient (CC) to emphasize that change in 
voice.

Changes in the resulting voice vectors were compared 
to physiological and behavioral measures of fatigue. This 
is discussed in the next section.

Performance models and Sleepiness measures
The hypothesis that voice changes reflect the speaker’s 

level of sleepiness and, consequently, his or her level of 
performance on alertness-dependent tasks, was formu-
lated. To test this hypothesis, three models, or sets of data, 
with which voice could be compared included: (1) sleep 
onset latency, (2) a parametric performance model, and 
(3) a nonparametric performance model.

Sleep onset latency (SOl). Historically, the Multiple 
Sleep Latency Test (MSLT) has been the primary objec-
tive test used for the measurement of sleepiness and alert-
ness, respectively. The MSLT procedure was formalized 

Figure 3. Performing voice quantification from the speech signal. As is common to most 
speech recognition software, the front end of our system recognizes individual sounds by 
matching the cepstral components of windowed segments of the voice signal to known sound-
cepstrum templates. We refer to these cepstral components as the voice vector.
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in 1977 to measure sleepiness in young normal subjects 
involved in sleep deprivation experiments. The methodol-
ogy requires subjects to be put in bed during the wake 
period and told to try to fall asleep. Each test is terminated 
after 20 min if the subject did not fall asleep. If sleep oc-
curs, the subject is awakened after 60 sec of Stage 1 sleep. 
The SOL is measured from lights out to the first minute of 
stage 1 sleep. Significant correlations often found between 
the length of sleep loss and sleep latency gives face valid-
ity for using sleep onset latency as a biologically based 
measure of sleepiness (Arand, Bonnet, Hurwitz, Mitler, 
Rosa, & Sangal, 2005).

Parametric performance model. Parametric models 
are characterized by having a fixed structure derived by 
prior knowledge of the system being modeled. This prior 
knowledge can be taken from mathematical equations, 
empirical relationships, or first principles. As might be 
assumed, this prior knowledge requires a detailed and pre-
cise understanding of the phenomenon being modeled.

One example of a well developed parametric model of 
predicted performance changes with regard to sleep cy-
cles, is the Sleep, Activity, Fatigue, and Task Effectiveness 
(SAFTE) model (Hursh et al., 2004). This overall parametric 
sleep model, illustrated schematically in Figure 4, assumes 
that each individual has a sleep-dependent reservoir of ca-
pacity to perform cognitive tasks. Under fully rested condi-
tions, a person has a finite maximal capacity to perform, as 
represented in the figure as a reservoir value Rc. While the 

individual is awake, this capacity is depleted. While asleep, 
the reservoir (and hence capacity) is replenished.

In a parametric model, a fixed structure, developed from 
an understanding of the system under study, imposes differ-
ent tasks on different parts of the model. As a result, inter-
pretation of the model’s response to input parameter changes 
can be based on the components of the actual system. For 
example, the amount of replenishment that occurs during 
sleep is dependent upon the depth and quality of sleep, 
which in turn, depends upon how sleepy the individual was 
at sleep onset (C2 *[Rc 2 Rt] in Figure 4) as well as the time 
of sleep onset, relative to the sleeper’s circadian phase. Wak-
ing during sleep produces sleep fragmentation and causes a 
decrease in replenishment of the reservoir. During waking 
hours, the amount and type of activity that the individual 
performs influences the amount of drain on the reservoir.

nonparametric performance model. Nonparamet-
ric models (such as artificial neural networks) do not re-
quire a priori knowledge of the system under study and, as 
such, are purely data-driven. In other words, a “black box” 
mapping between the measured inputs and the resulting 
outputs is determined. While nonparametric models often 
perform better (from a prediction vs. measurement per-
spective), their lack of a physiologically-based structure 
makes it difficult to translate the relationship between the 
model’s internal parameters and the system under study.

Nonparametric models can be developed based upon 
correlations with observed data and mathematical equa-
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Figure 4. Block diagram of the SAFtE model. Under fully rested conditions, a person has 
a finite maximal capacity to perform. this is represented by the reservoir capacity (rc). In 
our depiction of this model, adjustable flow valves (shown in the upper left and center right) 
are used to represent flow control into and out of the reservoir. During waking activity, the 
reservoir is depleted. During sleep the reservoir is replenished. the constant rate terms C1, 
C2, and C3, are modeled according to each subject’s test data. Circadian influences affect the 
rate the replenishment process and has an overall effect on performance.
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tions which describe this data. The resulting model’s 
generalization capability relates to the model’s ability to 
predict new data.

A nonparametric model was developed using an equa-
tion for passive performance suggested by Gregory et al. 
(2004) as shown in Equation 2. The terms on the left side 
of Equation 2 reflect time awake, while those on the right 
side reflect circadian influences. We determined the non-
parametric model for each subject by adjusting the “A” 
and “peak” constants of Equation 2, and visually match-
ing the model to the SOL versus time awake data.

 Passive performance (alertness) 5 [(31.4 – A)* 
exp(20.527*SD) 1 A]*{1 1 0.33* (2) 
cos[6.28*(time – peak)/24]}, 

where

SD 5 hours awake
peak 5 time of day at peak performance
time 5 time of day

and
A is a curve fitting coefficient.

Using both SOL and Performance models as bench-
marks, the present study tracked changes in the voice cor-
relation metric (described above) as the speakers in the 
three test groups became fatigued. This is documented in 
the following section.

tESt rESUltS

Voice Change With Fatigue
Voice versus SOl. Figure 5 shows the group aver-

age change in both SOL and the Voice Correlation metric 
for the sounds “p” (as in pea) and “t” (as in tea) over the 
34-hour sleep loss testing period in the FAA study group. 
It can be seen from this figure that changes in the voiced 

“p” sound tracks sleepiness better than does the voiced “t” 
sound. It can be seen that change in articulation of the “p” 
sound tracks the change in sleepiness due to time awake 
(the abscissa of Figure 5) and is less influenced by circa-
dian effects than the sleep onset latency. Using time awake 
as the independent variable, the correlation coefficients 
(R) between SOL and time awake is 20.825, between 
Vc(p) and time awake is 20.89, and between Vc(t) and 
time awake is 20.67. From these numbers we estimate 
(using the value R2) that time awake accounts for 68%, 
79%, and 45% of the variation of SOL, Vc(p), and Vc(t), 
respectively. It can be supposed that circadian influences 
contribute a significant amount to the remaining variation 
of SOL, but less so to voice change.

Voice Versus Performance models
Figure 6 compares the FAA study-group average SOL 

against both parametric (SAFTE) and nonparametric 
models. For each subject, a circadian model (twin circa-
dian peaks) was determined by optimizing model output 
with his or her temperature (measured at the ear). Com-
bined with sleep onset latency versus time awake data, a 
SAFTE model was developed.

As shown in Figure 6, over the course of 34 h of wake-
fulness, the nonparametric model, which is data-driven, 
matches the circadian pattern of the SOL much more 
closely than the SAFTE model. 

Figure 7 compares the FAA study group’s average voice 
changes for the sound “p” with the two models. Unlike the 
SOL example (Figure 6), the parametric SAFTE model 
follows the voice-change data more closely than the non-
parametric model.

Figure 8 compares the Air Force placebo group’s voiced 
“p” sound data with the two models. Both models appear 
to follow a trend in a similar manner to the voice data, 
though the data-driven model (nonparametric) shows a 
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somewhat closer match. In this instance, the correlation 
between the SAFTE model and Vc(p) is 0.53, while that 
between the nonparametric model and Vc(p) is 0.81.

Differences Between the Groups
The right panel of Figure 9 illustrates the voice change 

metrics of the voiced “p” sound for our three subject groups. 
The FAA group averages (filled circles) showed less change 
over time than did the Air Force group (filled squares).

This difference might be explained by the relative level 
of activity performed by each of the two groups. As il-

lustrated in the SAFTE model schematic diagram (Fig-
ure 4), the rate of loss in the performance reservoir (Rt) is 
proportional to the level of activity while awake. The left 
panel of Figure 9 illustrates how changing this parameter 
affects the rate of performance decline for a simulated 
data set. The ability to perform this type of analysis is an 
advantage of parametric modeling over nonparametric 
modeling.

As discussed earlier, the FAA group performed signifi-
cantly less rigorous activity between testing periods than 
the Air Force group (daily office-type routine vs. hiking). 
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In order to test the hypothesis that this difference is re-
sponsible for the observed differential voice decrements 
over time, comparisons were made between these data 
and that obtained from the Creare test group. This group 
experienced a slightly higher level of activity compared 
with the FAA group. As illustrated by the filled triangle 
symbols of Figure 9 (right panel), the rate of decline in 
voice data for the Creare group also shows only a slightly 

greater decline in performance over time compared with 
the FAA group.

Differences Between the Sounds
Results show that voice sensitivity to fatigue depends, 

in part, upon the sound being uttered. A possible explana-
tion for this can be based on the amount of airflow associ-
ated with each sound.
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Airflow in the respiratory tract is a function of driv-
ing pressure and resistance. Driving pressure comes from 
the lungs and resistance is produced along the respiratory 
tract. Common locations for modulated resistance include 
the larynx and oral cavity. The relationship of airflow to 
driving pressure and resistance can be represented as fol-
lows (Equation 3):

 U (flow) 5 P (driving pressure)/Z (airway resistance). (3)

Table 1 lists average airflow required to articulate the 
sounds analyzed in this study.

When one compares average airflow for specific con-
sonants, with changes in the vocal characteristics of those 
consonants with fatigue, an association begins to emerge. 
Generally, vocal changes when verbalizing consonant 
sounds that require a high average airflow, were found to 
be more sensitive to fatigue. For example, Figure 10 illus-
trates the association between voice change, for both the 
Air Force and the FAA test groups, and the nonparamet-
ric performance model verses the average air flow for the 
monitored sounds. We see a significant (P 5 .01) relation-
ship between voiced sound performance estimation ability 
and the average flow required to utter that sound.

DISCUSSIOn

Periodic speech recordings were made during three sep-
arate test protocol conditions. Generally, during (1) 2 days 
of testing in a relaxed setting with no sleep, (2) a 4-day 
hike with restricted sleep, and (3) a day of testing in a work 
environment. With the aid of specially designed speech 
recognition and voice component analysis software, these 
data were analyzed to isolate individual sounds (speech 
phones) that are most sensitive to fatigue, and to quantify 
the characteristics of these sounds. For particular sounds, 
changes in these characteristics were used to quantify and 
estimate the speaker’s level of fatigue.

The testing conditions reported here indicate that, for 
speech sounds requiring a large average air flow, a speaker’s 
voice changes in synchrony with both direct measures of 
fatigue and with changes predicted by the length of time 
awake. Comparison of voice change with models based 
upon time awake, such as the SAFTE model, has limitations 
due to the observation that time awake does not accurately 
quantify the speaker’s level of activity over that time.

While many physiological systems experience a circa-
dian influence, they do not do so with the same sensitivity. 
This appears to be the case with sleepiness (as measured 
by the sleep onset latency) and voice change.

Even with these differences, we believe that the associ-
ation between voice change, time awake, and performance 
can be used as the basis for an operational setting in which 
remotely monitored voices can be analyzed to estimate the 
speaker’s level of fatigue. The results presented here are a 
first step in this development process.

Fatigue has previously been shown to affect voice at a 
number of levels. This includes anatomical timing between 
articulation of sounds (Vollrath, 1994), time between 
sounds within a word (Krüger & Vollrath, 1996), and total 
word duration (Whitmore & Fisher, 1996). As is the case 
with many biological systems, circadian effects and bio-
logical individually combine to make sensitivity to fatigue 
individual-specific (Roth et al., 1989).

table 1 
Average Airflow necessary to Generate the 

Speech Sounds Used in Our Analysis

 Sound  Average Airflow  

/t/ 968
/p/ 933
/d/ 525
/g/ 372
/l/ 133
/m/ 168

 /z/  159  

R = 0.77
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Figure 10. the association between average flow and estimation score of the Air Force 
and FAA voice data. Here voice correlation with the nonparametric model is plotted versus 
airflow. It can be seen that there is a significant correlation (P 5 .01) between the estimation 
capability of a sound and the average airflow required to utter that sound.
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Our approach to voice analysis is unique in that it does 
not focus on a single, discrete, voice parameter but, in-
stead, examines changes in a mathematical representation 
of the entire voice (the Cepstral components). This repre-
sentation is highly individual-specific; in fact, this is, in 
part, how voice recognizers work.

As a next step, the sensitivity and specificity of this 
voice-based approach should be determined by way of 
testing similar to that reported here with an analysis of 
individual (as opposed to group average) voice data from 
a significantly larger population of subjects.

The resulting fatigue estimation system should serve 
as a decision aid tool. However, due to variable sensitivity 
and specificity typical of most biomedical measurements, 
the final determination of fatigue-related effects should 
still be the task of a human evaluator.
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