
Enhancements to the DARPA Communicator
Architecture

Theban Stanley, Julie Baca, Matt Elliott, and Joseph Picone
Center for Advanced Vehicular Systems, Mississippi State University

{stanley, baca, elliott, picone} @cavs.msstate.edu

ABSTRACT

The DARPA Communicator program has fuelled the design
and development of impressive human language technology
applications. Its distributed framework has offered
numerous benefits to the research community, including
reduced prototype development time, sharing of
components across sites, and provision of a standard
evaluation platform. It has also enabled development of
client-server applications with complex inter-process
communication between modules. However, this latter
feature, though beneficial, introduces complexities, which
reduce overall system robustness to failure. In addition, the
ability to handle multiple users and multiple applications
from a common interface is not innately supported. In this
paper, we describe our enhancements to the original
Communicator architecture to address robustness issues
and to support a multiple multi-user application capability.
These enhancements are available in our public domain
toolkit.

KEYWORDS: DARPA Communicator, Multi-
user/application environment, State Machine Architecture,
Handshaking.

1. INTRODUCTION
Early human language technology systems were designed
in a monolithic fashion. As these systems became more
complex, this design became untenable and difficult to
maintain. In its place, the concept of distributed processing
evolved wherein the monolithic structure was decomposed
into number of functional components that could interact
through a common protocol. This distributed framework
was readily accepted by the research community and has
been a cornerstone for the advancement in cutting edge
human language technology prototype systems. The
DARPA Communicator program has been highly
successful in implementing this approach [1].

In our laboratory, we used the Communicator
architecture to design and develop a human language
system consisting of four applications:

• Speech analysis: supports basic speech signal analysis,
e.g., spectrograms, energy plots, and waveforms and is
used by all other applications.

• Speech recognition: decodes spoken utterances and
provides support for more complex applications.

• Speaker verification: verifies whether a user is
authorized speaker or an imposter.

• Dialog system: provides spoken language access for
navigational data queries.

We initially prototyped a dialog system application as
shown in Figure 1. The plug-and-play capability of the
Communicator architecture is well known for reducing
prototype development time by enabling sharing of
components across sites, allowing research groups to
specialize in specific technologies and share others. It also

Figure 1: An overview of a DARPA Communicator-based dialog
system architecture.

provides a standard platform for evaluation of systems
developed by different laboratories. Within this platform,
multiple servers communicate through a common protocol
programmed in the “hub”. The hub is readily
programmable which provides the ability to change the
interaction between servers with ease. Figure 1 illustrates
the use of this hub and spoke architecture for our dialog
system. The servers include the speech recognition module
[2], database and dialog management modules [2],
developed in our lab and the natural language parser and
generation modules [4] from the University of Colorado
Center for Spoken Language Processing.

The features noted above proved invaluable in
reducing our initial development time. However we also
encountered certain vulnerabilities in the architecture
during this phase and the need for additional capabilities in
the subsequent expansion of our system to include multiple
applications. This paper describes design enhancements
made to the original Communicator architecture to address
these needs, including automated support of multiple multi-
user applications through a common interface,
improvements on robustness to failure, and enhanced
debugging. Finally, we present measurements of system
performance improvements and plans for future
development.

2. ORIGINAL ARCHITECTURE
Our initial dialog system was built over the DARPA

Communicator’s message based, hub and spoke
architecture. The hub acted as the backbone of the
Communicator architecture by routing messages between
servers. Supporting such a complex communication
between the servers required a standard protocol for
messaging. This was achieved by an entity called
Communicator frame which is data structure consisting of a
set of key-value pairs. During the initial start up of the
system, all the necessary servers are started first followed
by the hub. As the hub starts, it initializes itself by reading
a hub script file. The hub scripts have information about
the list of servers the hub has to contact, the port numbers
of these servers and a set of rules. These hub rules dictate
the behavior of the hub to a certain message. The hub rules
can be easily modified to reroute the messages, which is a
notable feature of the Hub. Once the hub initializes, it
sends an initialization messages to all server. Once all the
servers are initialized the initial trigger comes from the user
which in turn triggers an avalanche of message exchanges.

During the initial design phase, we experienced
communication deadlocks among servers and memory
management issues that were difficult to debug. Basic
logging mechanisms were provided to address some of
these issues, but certain desirable features were not
available, such as automated server startup, error-detection
and correction. We anticipated such issues would grow in

number and complexity as we added multiple multi-user
applications.

As an example, the user interface for our system ran as
a client program on a laptop with the computational servers
running on a workstation. The original architecture
serviced multiple users, but required manual server startup,
including the port allocation to avoid port conflicts.
Further, it required manual detection and correction of
server errors by restarting them from the workstation. In
either case, startup or error detection, the laptop and
workstation may not be in close proximity. Clearly, one
solution to the latter problem was to enhance the system
robustness to failure. We describe our efforts to enhance
this capability later in this section. However, no such
solution will remove all errors and their potential grows as
the number of applications and users increases. It is
important, therefore, to also provide graceful error
management. To address these issues, we developed a
module to automate server startup as well as server error
detection and correction.

Supporting multiple applications also required a
common interface that allows the user to choose from the
applications and coordinates inter-process communication
with each application server and process. We designed and
integrated this enhanced functionality with the server
management module as well.

With respect to robustness, the Communicator
architecture provides a basic structure called a “frame” for
communication among servers and processes [3]. This
structure implicitly allows a strict “handshaking” protocol,
but does not require or provide an implementation of such a
protocol. We found that implementing and enforcing such a
protocol became critical for system robustness as the
number and complexity of our applications grew. We also
developed debugging tools with corresponding diagnostics
and visual displays specific to this protocol.

3. ARCHITECTURAL
ENHANCEMENTS

Our first and most critical need concerned automating
server startup, error detection and correction. Secondly, we
required a common interface to allow users to select among
applications. In addition, the need for robustness to error
and improved debugging capabilities were heightened with
multiple applications.

3.1. Automated Server Management

Automated server management became critical with the
addition of multiple applications. Though the
Communicator process monitor provides an excellent
interface to start and terminate servers, it requires manual
monitoring. To address this issue, we designed the Process
Manager module that automatically starts and controls all
server processes in the prototype system architecture.

Figure 2 shows an overview of the multi user architecture
for multiple applications.

When a user starts a new application, the client
program requests the Process Manager to start the
respective servers and the hub. The Process Manager
performs this startup task by invoking a Java Process
Object. The Java Process Object enables the Process
Manager module to control all server processes. The
Process Manager module can create a process, wait on a
process, perform input/output on the process and even
check the exit status of the process. If a server process fails
for any reason, the Process Manager detects the failure and
sends a message to the client side forcing the user to restart
the demo. In a multi-user environment, port allocation also
needs special attention. The Process Manager allocates port
numbers and ensures no two servers are assigned the same
port.

3.2. Common Application Interface

Support for multiple applications required providing a
common interface from which users could select an
application of interest. We designed our Demo Selector
module to provide the desired interface and coordinate with
the Process Manager module to start the required servers.

The Demo Selector interface displays a single screen
with icons for each of the four applications. Once the user

selects an application, the Demo Selector loads and
displays the user interface needed for the specific
application. Figure 3 shows the Demo Selector interface for
the four applications, superimposed with the user interface
for the Speech Analysis application, after it has been
selected. The client program sends a Communicator frame
with a key-value pair containing the name of the
application that was selected. Upon receiving the message
in this frame, the Process Manager starts the required
servers. The Demo Selector also has a network
configuration menu as referenced in Figure 3 that allows
the user to set the IP address of the server machine and port
through which the client program communicates with the
process manager.

3.3. Improvements on System Robustness

Improving system robustness to failure was a primary focus
of our enhancements. As the foundation of our redesign
strategy, we targeted a simple application, Speech
Analysis. Our approach entailed using the implicit
capabilities of the Communicator to enhance reliability of
inter-process communication between clients and servers.
This section describes how we implemented a state
machine architecture to support a basic handshaking
protocol between the client and servers using frames.
Figure 4 shows an overall view of the client-server
modules for Speech Analysis. Note that even this simple
application requires two servers, Audio Record and Signal
Detector.

Figure 2: The Process Manager module controls multiple
applications and servers.

Figure 3: Demo Selector and Speech Analysis user interface

Figure 5 shows the state machine architecture and
basic handshaking supported between the Speech Analysis
client and the Signal Detector server. We used a simple
handshaking protocol with signals and acknowledgements,
each implemented as Communicator frames sent via the
hub. The states and handshaking protocol support three
major interaction phases between client and server,
1) preparing for data transfer; 2) data transfer it self, and
3) end of data transfer. For phase 1, the client begins in the
Initialization state, during which it establishes connection
with the hub. It then transitions to the Audio_Ready state
and sends an audio_ready signal to the Signal Detector
server to prepare it for audio data transfer. The client then

waits for an acknowledgement of the audio_ready signal
from the Signal Detector server, and once received, it
transitions to the Audio_Ready_Ack state.

Phase 2, data transfer, begins when the client then
transitions to the Data_Transfer state and sends packets of
audio data in Communicator frames to the server. For each
frame of data sent, the client waits for an acknowledgement
from the server, which checks each for validity. If the
server receives a frame that is invalid, it does not send an
acknowledgement signal, but generates an error message,
written to a log file. The client will not send further data
until it receives an acknowledgement. If data transfer
completes successfully, the Signal Detector server detects
endpoints and passes the endpointed data to the client. The
client then sends an end of utterance signal to the Signal
Detector server and waits for an acknowledgement. On
receiving the end-of-utterance signal, the Signal Detector
server sends an acknowledgement signal to the client and
resets itself to the initial state. The handshaking protocol
described in this example is implemented for all
applications and has eliminated server failures and
deadlocks due to communication errors.

 4. PERFORMANCE
IMPROVEMENTS

Table 1 shows the performance data for 389 queries
spanning five different query types for our application.
This data was gathered early in our development efforts,
prior to our enhancements. Out of the 389 queries, 46.79%
“passed” or were answered correctly and 53.21 % “failed”
and were either answered incorrectly or unanswered. Note
that fatal server errors and server deadlocks together were
responsible for approximately 3% of the query failures. At
this early stage in development, lack of domain knowledge
contributed significantly to the other failures.

The state machine architecture enhancements have
eliminated fatal server errors in the test set, and trapped
system deadlocks that are due to inter process

 Failed(%)

Queries #of
utterances

Passed
(%) Server

 Errors

Deadlocks

Other

Address 101 70.30 0.00 0.00 29.70

Direction 219 39.73 2.28 2.28 55.70

Distance 23 47.83 8.70 0.00 43.48

 List of places 36 30.56 0.00 0.00 69.44

Building 10 20.00 0.00 0.00 80.00

TOTAL 389 46.79 1.80 1.29 50.13

Table 1: Performance data for the dialog application

Figure 5: Handshaking between the Speech Analysis client and
the Signal Detector server

Figure 4: Speech Analysis application (client and servers)

communication errors. Refer again to Figure 5 for an
example where these are detected and prevented.
Previously, an invalid data frame sent by the client to the
Signal Detector server could potentially cause it to fail. The
state machine architecture will prevent such an error: if the
client sends an invalid data frame to the server, the server
will generate an error message to a log file, and equally
importantly, will not send an acknowledgement to the
client of the invalid data. Until it receives this
acknowledgement, the client will stop data transfer. This
also traps a potential deadlock, since the client can be
programmed to time out after a specified wait time for an
acknowledgement. Further, the state machine debug
information written to the log file by the server can be used
to isolate and successfully debug where the data transfer
error occurred. Figure 6 shows the debug window built into
the user interface. The user can access this window when
direct access to the servers is not possible.

Finally, the process monitor of the original architecture
could not detect server failures, regardless of their origins.
Our enhancements have eliminated one cause of server
errors. However, if a server fails due to other types of
errors, the Process Manager detects the server failure,
terminates all servers, and informs the user to restart the
system, thus providing a more graceful level of error
handling.

5. CONCLUSIONS
The DARPA Communicator architecture significantly
advanced human language technology and, has played a
critical role in the design and development of human

language technology applications in our laboratory. In
developing these applications, we have addressed
vulnerabilities in this architecture through several
important enhancements, including automated server
startup, error detection and correction, support for multiple
multi-user applications, increased system robustness to
failure, and improved debugging capabilities.

We also plan to enhance the Process Manager to create
and manage server processes on different host machines to
increase the computational power available for
applications. This capability will enable us to run
applications at significantly greater speed on our
supercomputer clusters.

6. REFERENCES
[1] Hacioglu K. and Pellom, B., “A Distributed

Architecture for Robust Automatic Speech Recognition,”
in Proc. IEEE Int. Conf. on Acoustics, Speech, and
Signal Processing, pp. 1234-1234, Hong Kong,
April 2003.

[2] Baca, J., Zheng, J., Gao, H. and Picone, J., “Dialog

Systems for Automotive Environments,” in Proc.
European Conf. on Speech Comm. and Tech., Geneva,
Switzerland, pp. 1929-1932, Sep. 2003.

[3] “Galaxy Communicator,” SourceForge, 2003

(http://sourceforge.net/projects/communicator).

[4] Ward, W. and Pellom, B., “The CU

Communicator System,” in Proc. IEEE Automatic
Speech Recognition and Understanding Workshop,
Keystone, Colorado, USA., pp. 1234-1234, December
1999.

Figure 6: A debug window showing an audio data transfer error

