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ABSTRACT 

The DARPA Communicator program has fuelled the design 
and development of impressive human language technology 
applications. Its distributed framework has offered 
numerous benefits to the research community, including 
reduced prototype development time, sharing of 
components across sites, and provision of a standard 
evaluation platform. It has also enabled development of 
client-server applications with complex inter-process 
communication between modules. However, this latter 
feature, though beneficial, introduces complexities, which 
reduce overall system robustness to failure. In addition, the 
ability to handle multiple users and multiple applications 
from a common interface is not innately supported. In this 
paper, we describe our enhancements to the original 
Communicator architecture to address robustness issues 
and to support a multiple multi-user application capability. 
These enhancements are available in our public domain 
toolkit. 
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1. INTRODUCTION 
Early human language technology systems were designed 
in a monolithic fashion. As these systems became more 
complex, this design became untenable and difficult to 
maintain. In its place, the concept of distributed processing 
evolved wherein the monolithic structure was decomposed 
into number of functional components that could interact 
through a common protocol. This distributed framework 
was readily accepted by the research community and has 
been a cornerstone for the advancement in cutting edge 
human language technology prototype systems. The 
DARPA Communicator program has been highly 
successful in implementing this approach [1]. 

In our laboratory, we used the Communicator 
architecture to design and develop a human language 
system consisting of four applications: 

• Speech analysis: supports basic speech signal analysis, 
e.g., spectrograms, energy plots, and waveforms and is 
used by all other applications.  

• Speech recognition: decodes spoken utterances and 
provides support for more complex applications. 

• Speaker verification: verifies whether a user is 
authorized speaker or an imposter. 

• Dialog system: provides spoken language access for 
navigational data queries. 

We initially prototyped a dialog system application as 
shown in Figure 1. The plug-and-play capability of the 
Communicator architecture is well known for reducing 
prototype development time by enabling sharing of 
components across sites, allowing research groups to 
specialize in specific technologies and share others. It also 

Figure 1: An overview of a DARPA Communicator-based dialog 
system architecture. 



provides a standard platform for evaluation of systems 
developed by different laboratories. Within this platform, 
multiple servers communicate through a common protocol 
programmed in the “hub”. The hub is readily 
programmable which provides the ability to change the 
interaction between servers with ease. Figure 1 illustrates 
the use of this hub and spoke architecture for our dialog 
system. The servers include the speech recognition module 
[2], database and dialog management modules [2], 
developed in our lab and the natural language parser and 
generation modules [4] from the University of Colorado 
Center for Spoken Language Processing. 

The features noted above proved invaluable in 
reducing our initial development time. However we also 
encountered certain vulnerabilities in the architecture 
during this phase and the need for additional capabilities in 
the subsequent expansion of our system to include multiple 
applications. This paper describes design enhancements 
made to the original Communicator architecture to address 
these needs, including automated support of multiple multi-
user applications through a common interface, 
improvements on robustness to failure, and enhanced 
debugging. Finally, we present measurements of system 
performance improvements and plans for future 
development. 

2. ORIGINAL ARCHITECTURE 
Our initial dialog system was built over the DARPA 

Communicator’s message based, hub and spoke 
architecture. The hub acted as the backbone of the 
Communicator architecture by routing messages between 
servers. Supporting such a complex communication 
between the servers required a standard protocol for 
messaging. This was achieved by an entity called 
Communicator frame which is data structure consisting of a 
set of key-value pairs. During the initial start up of the 
system, all the necessary servers are started first followed 
by the hub. As the hub starts, it initializes itself by reading 
a hub script file. The hub scripts have information about 
the list of servers the hub has to contact, the port numbers 
of these servers and a set of rules. These hub rules dictate 
the behavior of the hub to a certain message.  The hub rules 
can be easily modified to reroute the messages, which is a 
notable feature of the Hub. Once the hub initializes, it 
sends an initialization messages to all server. Once all the 
servers are initialized the initial trigger comes from the user 
which in turn triggers an avalanche of message exchanges.  

During the initial design phase, we experienced 
communication deadlocks among servers and memory 
management issues that were difficult to debug. Basic 
logging mechanisms were provided to address some of 
these issues, but certain desirable features were not 
available, such as automated server startup, error-detection 
and correction. We anticipated such issues would grow in 

number and complexity as we added multiple multi-user 
applications.  

As an example, the user interface for our system ran as 
a client program on a laptop with the computational servers 
running on a workstation. The original architecture 
serviced multiple users, but required manual server startup, 
including the port allocation to avoid port conflicts. 
Further, it required manual detection and correction of 
server errors by restarting them from the workstation. In 
either case, startup or error detection, the laptop and 
workstation may not be in close proximity. Clearly, one 
solution to the latter problem was to enhance the system 
robustness to failure. We describe our efforts to enhance 
this capability later in this section. However, no such 
solution will remove all errors and their potential grows as 
the number of applications and users increases. It is 
important, therefore, to also provide graceful error 
management. To address these issues, we developed a 
module to automate server startup as well as server error 
detection and correction.  

Supporting multiple applications also required a 
common interface that allows the user to choose from the 
applications and coordinates inter-process communication 
with each application server and process. We designed and 
integrated this enhanced functionality with the server 
management module as well. 

With respect to robustness, the Communicator 
architecture provides a basic structure called a “frame” for 
communication among servers and processes [3]. This 
structure implicitly allows a strict “handshaking” protocol, 
but does not require or provide an implementation of such a 
protocol. We found that implementing and enforcing such a 
protocol became critical for system robustness as the 
number and complexity of our applications grew. We also 
developed debugging tools with corresponding diagnostics 
and visual displays specific to this protocol. 

3. ARCHITECTURAL 
ENHANCEMENTS 

Our first and most critical need concerned automating 
server startup, error detection and correction. Secondly, we 
required a common interface to allow users to select among 
applications. In addition, the need for robustness to error 
and improved debugging capabilities were heightened with 
multiple applications. 

3.1. Automated Server Management  

Automated server management became critical with the 
addition of multiple applications. Though the 
Communicator process monitor provides an excellent 
interface to start and terminate servers, it requires manual 
monitoring. To address this issue, we designed the Process 
Manager module that automatically starts and controls all 
server processes in the prototype system architecture. 



Figure 2 shows an overview of the multi user architecture 
for multiple applications. 

When a user starts a new application, the client 
program requests the Process Manager to start the 
respective servers and the hub. The Process Manager 
performs this startup task by invoking a Java Process 
Object. The Java Process Object enables the Process 
Manager module to control all server processes. The 
Process Manager module can create a process, wait on a 
process, perform input/output on the process and even 
check the exit status of the process. If a server process fails 
for any reason, the Process Manager detects the failure and 
sends a message to the client side forcing the user to restart 
the demo. In a multi-user environment, port allocation also 
needs special attention. The Process Manager allocates port 
numbers and ensures no two servers are assigned the same 
port. 

3.2. Common Application Interface 

Support for multiple applications required providing a 
common interface from which users could select an 
application of interest. We designed our Demo Selector 
module to provide the desired interface and coordinate with 
the Process Manager module to start the required servers. 

The Demo Selector interface displays a single screen 
with icons for each of the four applications. Once the user 

selects an application, the Demo Selector loads and 
displays the user interface needed for the specific 
application. Figure 3 shows the Demo Selector interface for 
the four applications, superimposed with the user interface 
for the Speech Analysis application, after it has been 
selected. The client program sends a Communicator frame 
with a key-value pair containing the name of the 
application that was selected. Upon receiving the message 
in this frame, the Process Manager starts the required 
servers. The Demo Selector also has a network 
configuration menu as referenced in Figure 3 that allows 
the user to set the IP address of the server machine and port 
through which the client program communicates with the 
process manager. 

3.3. Improvements on System Robustness 

Improving system robustness to failure was a primary focus 
of our enhancements. As the foundation of our redesign 
strategy, we targeted a simple application, Speech 
Analysis. Our approach entailed using the implicit 
capabilities of the Communicator to enhance reliability of 
inter-process communication between clients and servers. 
This section describes how we implemented a state 
machine architecture to support a basic handshaking 
protocol between the client and servers using frames. 
Figure 4 shows an overall view of the client-server 
modules for Speech Analysis. Note that even this simple 
application requires two servers, Audio Record and Signal 
Detector.  

Figure 2: The Process Manager module controls multiple
applications and servers. 

 
Figure 3: Demo Selector and Speech Analysis user interface 
 



Figure 5 shows the state machine architecture and 
basic handshaking supported between the Speech Analysis 
client and the Signal Detector server. We used a simple 
handshaking protocol with signals and acknowledgements, 
each implemented as Communicator frames sent via the 
hub. The states and handshaking protocol support three 
major interaction phases between client and server, 
1) preparing for data transfer; 2) data transfer it self, and 
3) end of data transfer. For phase 1, the client begins in the 
Initialization state, during which it establishes connection 
with the hub. It then transitions to the Audio_Ready state 
and sends an audio_ready signal to the Signal Detector 
server to prepare it for audio data transfer. The client then 

waits for an acknowledgement of the audio_ready signal 
from the Signal Detector server, and once received, it 
transitions to the Audio_Ready_Ack state.  

Phase 2, data transfer, begins when the client then 
transitions to the Data_Transfer state and sends packets of 
audio data in Communicator frames to the server. For each 
frame of data sent, the client waits for an acknowledgement 
from the server, which checks each for validity. If the 
server receives a frame that is invalid, it does not send an 
acknowledgement signal, but generates an error message, 
written to a log file. The client will not send further data 
until it receives an acknowledgement. If data transfer 
completes successfully, the Signal Detector server detects 
endpoints and passes the endpointed data to the client. The 
client then sends an end of utterance signal to the Signal 
Detector server and waits for an acknowledgement. On 
receiving the end-of-utterance signal, the Signal Detector 
server sends an acknowledgement signal to the client and 
resets itself to the initial state. The handshaking protocol 
described in this example is implemented for all 
applications and has eliminated server failures and 
deadlocks due to communication errors. 

 4. PERFORMANCE 
IMPROVEMENTS 

Table 1 shows the performance data for 389 queries 
spanning five different query types for our application. 
This data was gathered early in our development efforts, 
prior to our enhancements. Out of the 389 queries, 46.79% 
“passed” or were answered correctly and 53.21 % “failed” 
and were either answered incorrectly or unanswered. Note 
that fatal server errors and server deadlocks together were 
responsible for approximately 3% of the query failures. At 
this early stage in development, lack of domain knowledge 
contributed significantly to the other failures. 

The state machine architecture enhancements have 
eliminated fatal server errors in the test set, and trapped 
system deadlocks that are due to inter process 

                     Failed(%) 

Queries        #of 
utterances

Passed      
(%)          Server 

         Errors 
   
Deadlocks  
 

Other

Address 101 70.30 0.00 0.00 29.70 

Direction 219 39.73 2.28 2.28 55.70 

Distance 23 47.83 8.70 0.00 43.48 

   List of  places 36 30.56 0.00 0.00 69.44 

Building 10 20.00 0.00 0.00 80.00 

TOTAL 389            46.79             1.80 1.29 50.13 

 
Table 1: Performance data for the dialog application 

Figure 5: Handshaking between the Speech Analysis client and 
the Signal Detector server 

 
Figure 4:  Speech Analysis application (client and servers) 



communication errors. Refer again to Figure 5 for an 
example where these are detected and prevented. 
Previously, an invalid data frame sent by the client to the 
Signal Detector server could potentially cause it to fail. The 
state machine architecture will prevent such an error: if the 
client sends an invalid data frame to the server, the server 
will generate an error message to a log file, and equally 
importantly, will not send an acknowledgement to the 
client of the invalid data. Until it receives this 
acknowledgement, the client will stop data transfer. This 
also traps a potential deadlock, since the client can be 
programmed to time out after a specified wait time for an 
acknowledgement. Further, the state machine debug 
information written to the log file by the server can be used 
to isolate and successfully debug where the data transfer 
error occurred. Figure 6 shows the debug window built into 
the user interface. The user can access this window when 
direct access to the servers is not possible. 

Finally, the process monitor of the original architecture 
could not detect server failures, regardless of their origins. 
Our enhancements have eliminated one cause of server 
errors. However, if a server fails due to other types of 
errors, the Process Manager detects the server failure, 
terminates all servers, and informs the user to restart the 
system, thus providing a more graceful level of error 
handling. 

5. CONCLUSIONS 
The DARPA Communicator architecture significantly 
advanced human language technology and, has played a 
critical role in the design and development of human 

language technology applications in our laboratory. In 
developing these applications, we have addressed 
vulnerabilities in this architecture through several 
important enhancements, including automated server 
startup, error detection and correction, support for multiple 
multi-user applications, increased system robustness to 
failure, and improved debugging capabilities.  

We also plan to enhance the Process Manager to create 
and manage server processes on different host machines to 
increase the computational power available for 
applications. This capability will enable us to run 
applications at significantly greater speed on our 
supercomputer clusters. 
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Figure 6: A debug window showing an audio data transfer error 


