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Abstract 

Support vector machines (SVM) have become a very 
popular pattern recognition algorithm for speech 
processing. In this paper we describe an application of 
SVMs to speaker verification. Traditionally speaker 
verification systems have used hidden Markov models 
(HMM) and Gaussian mixture models (GMM). These 
classifiers are based on generative models and are prone 
to overfitting. They do not directly optimize discrimination. 
SVMs, which are based on the principle of structural risk 
minimization, consist of binary classifiers that maximize 
the margin between two classes. The power of SVMs lie in 
their ability to transform data to a higher dimensional 
space and to construct a linear binary classifier in this 
space. Experiments were conducted on the NIST 2003 
speaker recognition evaluation dataset. The SVM training 
was made computationally feasible by selecting only a 
small subset of vectors for building the out-of-class data. 
The results obtained using the SVMs showed a 9% absolute 
improvement in equal error rate and a 33% relative 
improvement in minimum detection cost function when 
compared to a comparable HMM baseline system. 

1. Introduction 
Speaker verification is a simple pattern recognition task 

that involves assessing the distance between a speaker 
claiming an identity and a stored model representing that 
identify [1]. A speaker verification system has to perform 
two main tasks: enrollment and verification. Enrollment is 
the task of constructing a speaker model that captures the 
spectral and temporal variations of the speaker. This 
enrollment data is used to build a model that will be used to 
authenticate the speaker during the verification phase. 
Speaker verification places a great emphasis on the 
acoustic modeling part of the speech processing task. 

During verification the input speech from the test 
subject is matched against the acoustic model. A likelihood 
representing the distance between the model and the 
measured observations is used to make a decision about the 
speaker’s identity. The test speaker is accepted or rejected 
based on a threshold set for the acoustic likelihood. A 
likelihood threshold is empirically determined such that a 

required trade off between false alarms and miss detections 
is obtained. Conventional speaker verification systems used 
an hidden Markov model (HMM) based classifier with 
Gaussian mixture models representing the emission 
probabilities of the HMM [2]. These systems use a 
generative model for the acoustic model and are prone to 
overfitting. Such models do not directly maximize 
discrimination [3]. 

Factors such as channel conditions, ambient noise, type 
of microphone etc. affect the performance of any pattern 
recognition system. Noise robustness can be achieved 
either by making the features robust to noise or by building 
a model that is robust to noisy features. SVMs take the later 
approach. 

SVMs are a popular approach to classification that are 
based on the principles of structural risk minimization. 
SVMs have recently been used for building large 
vocabulary continuous speech recognition (LVCSR) 
systems [3], and have shown good promise as a basis for 
discriminative training. SVMs have also been used for 
language and speaker identification applications 
recently [4]. SVMs are binary classifiers and are naturally 
suited for tasks such as speaker verification. In this paper 
we describe a basic speaker verification system using 
SVMs. The NIST 2003 Eval data was used for the 
experiments. The results obtained using SVMs showed a 
9% absolute improvement in equal error rate and a 33% 
relative improvement in minimum detection cost function 
when compared to an HMM-based baseline system. 

2. Support Vector Machines 
SVMs are trained in a similar fashion as neural 

networks. Neural networks have the ability to learn 
complex nonlinear decision boundaries from the data, but 
lack generalization because they are prone to 
overfitting [3]. SVMs are based on the principles of 
structural risk minimization, and hence have good 
generalization ability when compared to HMM and neural 
network based classifiers. SVMs in their simplest form are 
hyperplane classifiers [3]. The optimal hyperplane is the 
one that maximizes the margin between in-class and out-of-
class data and at the same time reduce the empirical risk 
[3]. The power of SVMs lies in their ability to transform 
data to a higher dimensional space and construct a linear 



binary classifier in the higher dimensional space [3]. A 
linear hyperplane in the higher dimensional space 
transforms to a complex nonlinear decision region in the 
input feature space. 

Let x  be a set of input feature vectors, and y  be the 
class labels for the feature vectors, this can be 
represented as tuples },{ ii yx where },...,1{ li = and 1±=y . 
The points lying on the decision surface satisfy Equation 1. 

0=+• bxw . (1) 

where w  is the normal to the decision region, and b is the 
distance of the hyperplane from the origin. The 
generalization power of SVMs lies in its ability to work as 
a soft decision classifier [3]. This is accommodated by the 
addition of a slack variable as shown below: 

11 +=−≥+• iii yforbwx ξ . (2) 
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where iξ  is a slack variable. Once the hyperplane using 
soft margin is obtained, the training examples must satisfy 
Equations 2 and 3. All points satisfying Equation 2 lie 
along the hyperplane H1 while those satisfying Equation 2 
lie along H2 as shown in Figure 1. Training and 
optimization of the classifier for speech signals is covered 
extensively in [3]. 

Thus far we have described an approach which can 
build a linear classifier on either overlapping or non-
overlapping data, but in real world the data is not linearly 
separable. This is where a kernel function is employed to 
transform the training data to a higher dimensional space. 
Radial basis functions (RBF) are the most popular choice 
for a kernel function for speech processing  [3]. An RBF 
kernel is defined as: 

}||exp{),( 2yxyxK −−= γ . (5) 

where γ  is the kernel parameter that influences the extent 
of non-linearity of the decision surface in the feature space. 
While testing, the SVM classifier returns a distance from 
the hyperplane. The functional form of the kernel based 
SVM classifier is defined as: 
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where α  holds the weights corresponding to every sample 
point in the feature space, these weights are the lagrangian 
multipliers [3]. Training examples with non-zero 
multipliers are referred to as support vectors because they 
define the classifier’s decision surface. The complexity of 
the classifier is loosely related to the number of support 
vectors used in the classifier.  

3. SVM Based Speaker Verification System 
A block diagram of a basic speaker verification system 

is shown in Figure 2. By using a discriminative classifier 
such as SVM we can combine the task of building impostor 
model and speaker model into a single training process. 
The feature extraction block extracts salient features from 
the raw speech data. The features must capture the temporal 
and spectral variations of the speech signal. The most 
popular features are the mel frequency cepstral coefficients 
(MFCCs) [5]. The MFCCs serve as inputs to the classifier. 

Training of the SVM classifier requires information 
about in-class data and out-of-class data. The training data 
should be split in a manner such that every speaker is 
associated with a pair of data sets, one for in-class data and 
the other representing the out-of-class data. The in-class 
data is obtained from the speaker’s MFCC vectors while 
the out of class data comprises of the MFCC vectors of all 
the remaining speakers in the training data set. This is 
equivalent to building an impostor model for HMM based 
systems. 

The SVM algorithm finds a suitable decision boundary 
that separates the in-class and out of class features. The 
functional form in Equation 6 is obtained after training, and 
during verification the test MFCC vectors are plugged into 
the model corresponding to the claimed identity and a 
distance measure is computed as output. A suitable 
threshold is used to decide the acceptance and rejection of a 

Figure 2. Basic blocks of a speaker verification system 
Figure 1. Examples of a soft margin classifier which is 
robust to training errors 



speaker. The main parameters that have to be tuned are the 
kernel parameter and the penalty value which is a critical 
factor in preventing training errors [3]. 

The speaker verification system described above is a 
very basic implementation using SVMs. However, as 
shown in the next section, this technique is promising since 
its performance is comparable to a baseline HMM system 
and uses only a small subset of the original training data. It 
is possible to further improve performance using a hybrid 
system that combines SVMs and HMMs. The final distance 
measures can be converted to a posterior probability using 
the sigmoid function and used as emission probabilities for 
an HMM. Hybrid systems have proven to give reasonable 
improvements in performance for speech recognition tasks 
[3]. 

4. Experimental Setup and Analysis 
NIST 2003 speaker recognition evaluation data was 

used for all the experiments described in this section [6]. 
All utterances in the development data set were 
approximately 2 minutes in length. The development set 
contained 60 utterances for training and 78 utterances for 
testing. These utterances were taken from the Switchboard 
corpus. A standard 39-dimension MFCC feature vector was 
used. 

As described in Section 3, the SVM classifier requires 
information about in-class and out-of class data for every 
speaker in the training set. Suppose a model ‘x’ has to be 
trained for utterance ‘x’, in which case the in-class data for 
training will contain all the 39 dimensional MFCC feature 
set for the utterance ‘x’, and the out-of-class data is 
obtained by randomly picking “n” feature vectors from all 
the remaining utterances in the training data set. The size of 
“n” was determined in such a way that the out-of-class data 
had twice the number of MFCC vectors when compared to 
the in-class data. This is an approximation and hence will 
not contain all the information required to represent the true 
out-of-class distribution, but this sort of approximation was 
necessary to make the SVM training computationally 
feasible. Hence, it has to be kept in mind that the 
performance of this system is based on classifiers that were 
exposed to only a small subset of data during training. 

During testing, the test MFCC vectors are used as input 
to compute the distance using the functional form of the 
model shown in Equation 6. A distance is computed for 
every single test vector, and finally an average distance for 
the entire feature vector set is computed. The average 

distance is used for final decision making. An ideal 
decision threshold is zero for SVM classifiers, but for 
speaker verification tasks we can determine a threshold 
where the detection cost function is minimum (DCF) [6]. 

The first set of experiments was conducted to determine 
the optimum value of γ  for the RBF kernel. It was 
observed that for γ  values between 2.5 to 0.02 there was 
very little variation in the distance scores for the test 
utterances. Performance was stable between 0.03 and 0.01 
as shown in the DET [7] curves of Figure 3.  

The minimum DCF points were obtained for each of 
these curves and it was observed that for γ =0.019 we 
obtained the lowest minimum DCF. The minimum DCF for 
various values of γ  are shown in Table 1. The Equal Error 
Rate was 16% with a γ  of 0.019 and the penalty parameter 
set to 50. It can be observed from the DET plot that there is 
very marginal change in performance for changes in the γ  
values in the selected range. The most significant 
improvement in performance was observed only with a γ  
value of 0.019 and the effect of this 
improvement also reflected in an improvement in minimum 
DCF value as shown in Table 1. 

Another parameter that had to be tuned was the penalty 
value that accounts for the training errors [3]. The penalty 
value was varied from 10 to 100 and no significant change 
in the in Min DCF value was observed. Hence a mid range 
value of 50 was chosen. 

We compared the results obtained on the SVM based 
speaker verification system with the baseline HMM system. 
The baseline system used 16-mixture Gaussians as the 
underlying classifier. An impostor model was trained on all 
the utterances in the development train set while the 
speaker models were built using the corresponding speaker 

Table 1. Minimum DCF as a function of γ  

Gamma(C=50) Min DCF 
0.010 0.2125 
0.015 0.2168 
0.019 0.1406 
0.030 0.2305 

 
Figure 3. DET curves for various values of the RBF 
kernel parameter γ



utterance and constructing 16-mixture Gaussians. During 
testing, a likelihood ratio was computed between the 
speaker model and the impostor model. The likelihood ratio 
was defined as: 

mod)_|(log
mod)_|(log

impxP
spxPLR

−
=

. (7) 

where LR is the likelihood ratio, “x” is the input test vector, 
“sp_mod” and “imp_mod” are the speaker and impostor 
models respectively. The equal error rate obtained on the 
HMM baseline system was close to 25% and the Min DCF 
was 0.2124. A comparative DET plot between SVM and 
baseline HMM system is shown in Figure 4 and their 
comparative performances are listed in Table 2. 

5. Conclusions 
In this paper we applied SVMs to the task of speaker 

verification. The SVM-based speaker verification system 
was compared with a baseline HMM system and a 
reasonable improvement in performance was noted with the 
SVM system. The EER improved by 9% absolute and the 
min DCF value improved by 33% relative. These 
improvements suggest that SVMs are better suited for tasks 
such as speaker verification which requires a simple 
nonlinear binary classifier. The effect of RBF kernel 
parameter gamma and the training error penalty was also 
analyzed. Overall system performance was not extremely 
sensitive to changes in these parameters.  

Future work will include combining both the HMM and 
SVM systems into a single architecture. In order to make 
SVM training computationally feasible, an experimental 
approach was designed that leveraged a subsampling 
strategy. A more comprehensive strategy based on 
principles of active learning is under development and is 
expected to significantly improve performance over the 
subsampling strategy.  
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Table 2. Comparision of SVM based speaker verification 
system with the baseline HMM system 

    HMM     SVM 
EER 
25% 

EER 
16% 

Min DCF 
0.2124 

Min DCF 
0.1406 

Figure 4. A comparison of HMM and SVM performance


