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Abstract 

Nonlinear dynamical systems can be identified by their 
sensitivity to initial conditions. This is captured by a set of 
invariant measures called Lyapunov exponents. For 
accurate esitmation of these exponents from an observed 
time series, we need knowledge of the trajectory 
representing time evolution of the system attractor. In this 
paper we present an explanation of reconstructed phase 
spaces. We then build on the motivation behind Lyapunov 
exponents and present an algorithm for their estimation. 
Experiments were performed on two standard chaotic 
series and on a deterministic, periodic series. Results 
indicate that positive and zero exponents can be estimated 
reliably even in the presence of noise.  

1. Introduction 
A time series representing an observable of a nonlinear 

dynamical system contains information that is hard to 
capture using conventional tools such as Fourier analysis. 
A regular Fourier spectrum provides useful information if 
the signal is generated by a linear source. However, for 
signals generated by a nonlinear source, the Fourier 
spectrum will typically reveal a wideband (infinite 
dimensional) structure, even though the dynamical system 
exists in a finite dimensional space [1]. Hence, an 
alternative characterization of such time series is desired. 

A nonlinear system can be described using a state-space 
model with a number of observable output states. The time 
evolution of these observables in the state-space constitutes 
a trajectory. Lyapunov exponents associated with a 
trajectory provide us with a measure of average rates of 
convergence and divergence of surrounding trajectories. 
These are considered to be an important invariant 
characterization of the underlying dynamical system. 
Lyapunov exponents are also a good measure to distinguish 
between fixed points, periodic, quasi-periodic and chaotic 
motions [2]. 

The outline of the paper is as follows. In Section 2, we 
explain concepts of reconstructed phase spaces and 
embedding. We also illustrate these concepts with an 
example of a time series generated from a Lorentz system. 
In Section 3, we introduce the concept of Lyapunov 
exponents and illustrate the algorithmic implementation of 

Lyapunov spectra estimation from an observed time series. 
In Section 4, we present the experimental setup and the 
simulation results exemplifying the theory presented.  

2. Reconstructed Phase-Space 
Computation of the Lyapunov exponents presupposes 

that we have full knowledge of the dynamics of a system. 
This requires us to have measurements for each possible 
variable in the system. However, in practice, we usually 
have only one time series measurement. In such cases, 
though we cannot find the exact phase-space of the system, 
a pseudo phase-space (equivalent to the original phase-
space in terms of the system invariants) may still be 
constructed. This pseudo phase-space [2][3] is called the 
Reconstructed Phase-Space (RPS). 

To form the RPS matrix from a time series, we need to 
know the inherent system dimension, d. From knowledge 
of the system dimension, an upper bound on the dimension 
of the RPS can be placed. Taken’s theorem [2] states that 
we can construct an RPS that is equivalent to the original 
phase-space by embedding with a dimension m ≥ 2d+1. 
Though this theorem provides us with a theoretically 
sufficient bound, such a bound is not necessary in practice. 
Most systems can be embedded in much lower-dimensional 
spaces. There are two methods [2] by which embedding 
can be achieved: Time Delay and Singular Value 
Decomposition (SVD).  

2.1. Time Delay Embedding 
The simplest method to embed scalar data is the method 

of delays. This works by reconstructing the pseudo phase-
space from a scalar time series, by using delayed copies of 
the original time series as components of the RPS. It 
involves sliding a window of length m through the data to 
form a series of vectors, stacked row-wise in the matrix. 
Each row of this matrix is a point in the reconstructed 
phase-space.  

Letting {  represent the time series, the RPS matrix is 
represented as given by equation 1, where m is the 
embedding dimension and 

}ix

τ  is the embedding delay (in 
samples).  
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Fixing an optimal value of m requires domain specific 
knowledge about the time series being analyzed. The 
method of false-nearest neighbors can be useful to some 
extent in this regard. The delay parameter,τ , is chosen 
such that the structure of the original attractor is captured in 
the RPS. Underestimating the value for delay leads to 
highly correlated vector elements, which would now be 
concentrated around the diagonal in the embedding space, 
and the structure perpendicular to the diagonal is not 
captured adequately. On the other hand, a very large 
estimate of the delay will result in the elements of each 
vector to behave as if they are randomly distributed. 
Quantitative tools like auto-correlation and auto-mutual 
information are useful guides in choosing the optimal value 
ofτ . 
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2.2. SVD Embedding 
Time delay embedding requires knowledge of the 

optimal delay for reconstructing the RPS. Though this 
parameter can be estimated using plots of auto-correlation 
or auto-mutual information, this value is not guaranteed to 
yield the correct RPS. Moreover, if the time series is 
corrupted by noise, time delay embedding can yield RPS 
matrices that are very poor representations of the actual 
phase-space. For these reasons, another method of 
embedding using SVD is preferred. 

SVD embedding works in two stages. In the first stage, 
an initial RPS matrix is formed from the time series using 
time delay embedding with delay of one sample. The 
dimension for this embedding is larger than the actual 
embedding dimension and is referred to as SVD window 
size. The second stage proceeds by reducing this matrix, 
using SVD, to a matrix with the same number of rows but a 
number of columns equal to the embedding dimension. 

The application of SVD in reducing the noise level is 
well known in signal processing. It is expected that the 
Lyapunov exponents calculated from SVD embedded RPS 
will be more robust to noise than those estimated from time 
delay embedding. For this reason, we restrict our analysis 
to SVD embedding.  

2.3. Simulation Using the Lorentz System 
A popular dynamical system that is used in the study of 

chaos is the Lorentz system [3] of differential equations: 

Y =  (2) 

Figure 2 shows the attractor structure of the system with 
parameters == brσ  in the x-y plane. 
It also shows the attractor structure in the reconstructed 
phase space generated by SVD embedding ( 3=m and 
SVD window size=15). A visual inspection of this figure 
reveals that the original structure of the system attractor is 
preserved in the RPS. 

3. Lyapunov Exponents 
The analysis of separation in time of two trajectories 

with infinitely close initial points is very important in the 
analysis of nonlinear dynamical systems [1]. For a system 
whose evolution function is defined by a function f, we 
need to analyze 
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To quantify this separation, we assume that the rate of 
growth (or decay) of the separation between the trajectories 
is exponential in time. Hence we define the exponents,λ as 
0  
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where, J is the Jacobian of the system as the point p moves 
around the attractor. These exponents are invariant 
characteristics of the system and are called Lyapunov 
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igure 2. The attractor structure of the Lorentz system 
n the original and reconstructed state-space. 



exponents. 
For a multidimensional system, we have as many 

Lyapunov exponents as the dimension of the system. They 
may be zero, negative or positive. For a dynamical system 
with a bounded attractor, the sum of all Lyapunov 
exponents should be less than or equal to zero. Zero 
exponents indicate that the system is a flow, while the 
positive ones indicate that the system is chaotic. Negative 
exponents characterize a system’s tendency to pull an 
evolving trajectory towards the basin of attraction.  

3.1. Computation of Lyapunov Exponents 
 An algorithm to compute Lyapunov exponents is given 

in Figure 3. We begin by embedding the input time series 
to provide the RPS matrix with each row representing a 
point on the trajectory. With the first point as center, we 
form a neighborhood matrix, each row of which is obtained 

by subtracting a neighbor from the center. Next, we find 
the evolution of each neighbor and form the evolved 
neighborhood matrix. The trajectory matrix is computed by 
multiplying the pseudo-inverse of neighborhood matrix 
with the evolved neighborhood matrix. The Lyapunov 
exponents are calculated from the eigen-values of the 
trajectory matrix. These exponents are averaged by 
evolving the center point through the trajectory. Since 
direct averaging has numerical problems, an iterative QR 
decomposition method (Treppen iteration) is used. 

4. Experimental Setup and Results 
To demonstrate the accuracy of our implementation, two 

chaotic systems - Lorentz and Rossler, are considered. The 
equations for Lorentz system are given in equation 2 and 
the parameters considered for that system 
are 0.4 and 0.40,0.16 === brσ . The parameters for the 
Rossler system [4], [5] are a = 0.15, b = 0.2, c = 10. The 
accepted dimensionality of both the systems is three and 
the Lyapunov exponents for the Lorentz and Rossler 
systems with the given parameters can be calculated 
numerically and were found to be (+1.37, 0, -22.37) and 
(0.090, 0.00, -9.8), respectively.  

To gain confidence about the accuracy of our 
algorithmic implementation, we also tested it on a 
sinusoidal signal of frequency 1 Hz sampled using a 
sampling interval of 0.06s. Since a sinusoidal signal 
generates a periodic attractor (a circle), it is expected to 
have zero and negative exponents only. The absence of 
positive exponents indicates that the trajectory is stable and 
never diverges during its evolution. The presence of a 
negative exponent indicates the tendency of the system 
attractor to pull any trajectory divergence towards the basin 
of attraction. Previously reported exponents [6] for this 
sinusoid are (0.00, 0.00, -1.85).  

Figures 3-5 illustrate Lyapunov spectra estimates of 
various time series (with and without noise) as a function 
of two parameters – SVD window size and number of 
nearest neighbors. The SNR for the noisy series was set to 
10dB. When varying SVD window size, the number of 
neighbors was fixed at 15 for the clean series and at 50 for 
the noisy series. When varying number of neighbors, the 
SVD window size was fixed at 15 for the clean series and 
at 50 for the noisy series. In all cases, the evolution step 
was fixed at 8 samples. 

As can be seen from the figures, estimates of the positive 
and zero exponents from the clean series converge to the 
expected values. Also note that estimates of these 
exponents for noisy series converge for an SVD window 
size greater than 60 samples and for number of nearest 
neighbors greater than 50. However, the variation of the 
negative exponents in all cases does not follow any trend. 
This does not harm most nonlinear analyses because only 
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Figure 3. An algorithm to compute Lyapunov spectra 
from a scalar time series [2]



positive exponents are used for the characterization of 
chaos.  

5. Conclusions 
In this paper, we provided an explanation and 

motivation for reconstructed phase spaces using the 
methods of time delay and SVD embedding. We then 
explained Lyapunov exponents as a dynamical invariant 
measure and presented an algorithm for estimating them 
from an observed time series. We tested our 
implementation on two standard chaotic series and on a 
deterministic, periodic series.  Results indicating accurate 
estimation of positive and zero exponents were 
documented. It is hoped this algorithm will provide us with 
a useful signal processing tool to perform signal 
characterization and system identification in nonlinear 
settings.  
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Figure 5. Lyapunov exponents from a time series
generated from a Rossler system 
igure 4. Lyapunov exponents from a time series
enerated from a Lorentz system 
 
Figure 7. Lyapunov exponents from a sinusoidal
signal with and without noise 
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