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Abstract — Supporting popular language model grammar formats, 
such as JSGF and XML-SRGS, has been an important step forward 
for the speech recognition community, particularly with respect to 
integration of human language technology with Internet-based 
technologies. Industry standard formats, though conceptually 
straightforward implementations of context free grammars, contain 
restrictions that pose serious challenges when applied to aspects of 
the speech recognition problem. This paper compares and contrasts 
these formats, discusses the implications for speech recognition 
systems, and presents a unified language model architecture to 
support transparent conversion between various language model 
formats. This architecture requires the conversion of higher-level 
grammar specifications such as the JSGF and SRGS into lower-
level theoretical structures such as Augmented Backus-Naur form 
and Standard Backus-Naur form. The public domain implementation 
of this architecture provides a framework for future advancements 
in language model conversion and web-based speech recognition 
applications. 
 
Keywords — context free grammars, grammar transformations, 
speech recognition 

1.  INTRODUCTION 

Several industry standard grammar specifications such as 
the Java Speech Grammar Format (JSGF) [1] and the W3C 
XML Speech Recognition Grammar Specification (XML-
SRGS) [1] were created to support development of voice-
enabled Internet applications. While these standards allow for 
the specification of context free grammars (CFGs), most 
language models for automatic speech recognition have a 
regular grammar equivalent and can therefore be modeled as 
finite state machines (FSMs). To support language model 
creation using these standards, we developed a suite of 
software tools in our public domain speech recognition 
toolkit [3] to convert between these grammar formats. 

Issues of theoretical equivalence and restrictions on 
conversions between regular and context free grammars have 
been studied and described extensively. No algorithm has 
been proven to perform conversions from arbitrary CFGs 
generating regular languages to FSMs without assuming 
certain restrictions on the grammar, such as the absence of 
center-embedded non-terminals [4]. However, software tools 
have been developed for conversions between FSMs and 
CFGs which assume such restrictions on the grammars 
handled [5]. A similar restriction is assumed in the dynamic 
grammar compilation described in [6].  This work examined 

the use of finite-state transducers for dynamic grammar 
compilation, and thus focused on this aspect rather than the 
complexities of specific CFG to FSM conversions.   

Some commercial toolkits also provide conversions 
between specific CFGs, e.g., XML-SRGS to JSGF [7] or to a 
specific FSM. The difficulty with commercial products, 
however, is that conversion to FSMs for other recognition 
engines may not be easily supported.  In addition, our 
experience has shown that the specifics of each of the 
individual CFG-based Internet grammar formats present 
unique and significant challenges. No publication to date has 
adequately articulated in detail the challenges of converting 
these CFGs to FSMs in a manner that is modular and 
extensible, and therefore more easily used and widely 
applicable.  For example, the treatment of weights and 
probabilities in XML-SRGS differs fundamentally from that 
common to most speech recognition systems by treating 
weights on loops differently than weights on non-repeating 
arcs.  XML-SRGS thus requires a level of interpretation that 
other CFG formats may not.  Such features heighten the need 
for modular software architecture built upon the appropriate 
theoretical abstractions. The remainder of this paper 
describes the technical issues encountered in the design and 
implementation of our conversion process along with our 
solutions to these issues and offers insight into future 
development of robust, general purpose, and verifiable 
language model conversion tools. 

2.  GRAMMAR FORMATS 

This section provides an overview of existing language 
model grammar specifications for the Internet and examines 
how these are used in speech recognition systems.  First, 
however, for reference in the following sections, we mention 
our internal language model format, known as ISIP 
Hierarchical Digraph (IHD).   

Similar to the numerous recognizer-specific language 
model representations in common use, IHD is implemented 
as a set of hierarchically layered FSMs.  

As shown in Fig. 1, each FSM layer is a generic directed 
graph class or DiGraph. IHD binds these layers of FSMs 
together into levels. The top-most level contains a single 
DiGraph, with the nodes of this DiGraph mapping to more 
complete DiGraphs at the level below it. For example, the 



top-most layer might represent the sentence level, the level 
below that the word level, the next the state level.  

Our goal was to provide a bidirectional conversion tool 
that could systematically convert to and from JSGF and 
XML-SRGS, i.e., down to the phone and state level, so that 
recognition could be performed in these popular formats by 
our speech engine. While not all recognition systems 
supporting alternate grammar formats provide this capability, 
we believe that it is an important feature that reduces 
development efforts and experimental setup time. We also 
required the tool to provide the same level of conversion in 
reverse in order to allow our internal language models to be 
used on other recognition systems.  

The subtle but important distinctions between JSGF and 
XML-SRGS proved challenging to the task of developing 
general purpose conversion tools. However, our deepened 
understanding of these nuances led to the design of a modular 
software architecture providing conversion tools for these 
and future grammar formats. The remainder of this section 
presents key theoretical and syntactic features of each format, 
including similarities and differences. Section 0 presents the 
developed unified language model architecture. 

2.1  BNF and ABNF 

JSGF and XML-SRGS are theoretically equivalent in 
expressive and computational power, with both adhering in 
principle to Backus-Naur Form (BNF) [8], a formal notation 
for CFGs, and more specifically to two equivalent variants: 
Extended BNF (EBNF) [9] and Augmented BNF (ABNF). 
Many detailed descriptions of BNF and its variants exist. We 
briefly introduce key features relevant to our discussion.  

Stated simply, BNF defines a method for describing 
production rules in a CFG, including terminal and non-
terminal symbols for rules, and a selection of alternatives 
among rules. Though numerous variants of the syntax exist, 
an example rule in a BNF grammar might be: 

<A> ::= <B>|c 

where non-terminals are represented in capital letters, A, B, 
surrounded by brackets <> and can appear on the lefthand 
side (LHS) or righthand side (RHS) of the rule demarcated 

by the := symbol. Terminals are often expressed in lower 
case (though not required), but more importantly can appear 
only on the rule RHS. While concatenation is often implied, 
it can, for emphasis, be explicit.  In such cases, concatenation 
is typically expressed with the comma.  Finally, selection or 
branching among alternative rule definitions is expressed by 
the | symbol.  

BNF also allows the use of recursive rules in a grammar. 
Such rules directly or indirectly reference themselves.  An 
example of direct recursion might be:  <A> ::= a<A>.  The 
use of directly or indirectly recursive rules is useful to 
represent repetitive actions in an FSM. Consider the simple 
FSM in Fig. 2. This FSM recognizes the regular expression, 
a(bc)+ that could be represented in BNF with the production 
rules: 

<S> ::= <A> 
<A>::= aB 
<B> ::= (bc)|(bcB) 

The use of the non-terminal B on the RHS in rule 3 is 
recursive and indicates that subgraph bc is a cycle that can be 
repeated one or more times. However, for simple rules such 
as this, the cycle in this FSM could be represented using the 
Kleene + operator, a standard notation for regular 
expressions which denotes 1 or more repetitions. EBNF 
extends BNF to support the use of structures such as the * 
and + for repetition, as well as others.  (EBNF also has many 
variants, but its origins date to [9].) This allows for the 
creation of a more intuitive set of production rules for regular 
expressions, so that rules A and B above can be reduced to: 

<A> ::= a (bc)+ 

2.2  JSGF and XML-SRGS 

The lack of standardized specification for many concepts 
essential for speech recognition made BNF and ABNF less 
directly useful for this purpose.  This led to the creation of 
the first industrial grammar specification, JSGF.  Although 
JSGF and XML-SRGS both provide expressive equivalence 
to EBNF, they differ wildly in structure.  For instance, the 
rule in Fig. 2 could be represented in JSGF as: 

<A> = a(bc)+;  

Note that the + operator is supported directly as well as the 
use of parentheses. Consider the same rule in XML- SRGS: 

<rule>   
  <item> a </item> 
  <item repeat=’1-‘> 
    <item> b</item> 
    <item> c </item> 
  </item> 

        </rule> 

 
Fig. 1. IHD Format 



The <rule> tag marks this as a production rule.  The terminal 
symbols are marked with <item> tags, and the “repeat= ‘1-‘” 
attribute on the <item> grouping surrounding the non-
terminals b and c denotes the Kleene + operation (1 or more 
repetitions) applied to these tokens. 

Clearly, the JSGF syntax is more similar to EBNF than 
XML-SRGS. The differences are due in large part to their 
origins: XML was designed initially as a markup language 
for general Internet usage and later modified to provide 
support for spoken language; JSGF was designed from the 
outset to support spoken language applications.  The W3C 
SRGS attempted to address these issues first, by using JSGF 
as a theoretical model in defining the XML-SRGS, and 
second, by developing a standard specification for ABNF [2]. 
ABNF is an EBNF variant, with origins dating back to 
Arpanet. Any ABNF-SRGS can be mapped to XML-SRGS. 
The previous example could be written as shown below, 
using *1 for + before the item (bc) to be repeated:   

<A> = a *1 (bc) 

The subtle distinctions between syntaxes complicated the 
task of identifying underlying theoretical structures. Beyond 
the syntax issues, however, JSGF and XML-SRGS include 
programmatic constructs such as scope resolution, as well as 
methods for specifying weights, an essential feature for 
practical speech recognition.   

Another interesting set of issues arose with respect to 
recursion. While a conformant JSGF grammar processor 
must provide support for recursive rules (right recursive), this 
support is optional for conforming XML-SRGS processors. 
Though a detailed discussion is beyond the scope of this 
paper,  several arguments can be made in favor of this 
support. First, any right recursive rule can be rewritten using 
the Kleene * and + operators where more appropriate. 
Second, speech recognizers typically use regular grammars, 
which must be either left or right linear, and thus can contain 
only left or right recursion.  since including this capability 
would not affect grammars which did not support recursion, 
but the reverse was not true, we chose to include it in all our 
grammar format conversion tools.  

Other specific features of XML with respect to weights 
and probabilities complicated our design decisions.  These 
are discussed below. 

2.3  XML-SRGS Weights and Probabilities 

In XML-SRGS, the structures available for specification 
of probabilistic alternation do not correspond in a straight-
forward manner to weighted transitions of a FSM.  These 
structures take the form of the weight attribute and the 

repeat-prob attribute.  It is important to note that in XML-
SRGS, these are two different logical entities.  During 
translation to an accepting FSM, these attributes contribute in 
a complex manner to the determination of arc transition 
weights; specifically, weight attributes correspond to weights 
on the nodes of a Moore-machine style FSM and repeat-prob 
attributes correspond to weights on backward-facing arcs of a 
Mealy-machine style FSM.  This characteristic voids the 
possibility of utilizing standard Mealy-Moore conversions on 
an XML-SRGS grammar and complicates the XML-SRGS to 
accepting FSM translation.  An XML-SRGS grammar for the 
FSM in Fig. 3 using both the weight attribute and the repeat-
prob attribute is shown below: 

<grammar> 
  <rule> 
    <item> a </item> 
    <one-of> 
      <item weight='4'> b </item> 
    </one-of> 
    <item repeat='1-' repeat_prob='.43'> c </item> 
  </rule> 
</grammar> 

The first item in this grammar, a, has no weight since its 
incoming arc has no weight. The second item, b, has a weight 
on its node which may be interpreted as a weight on the 
transition from a to b.  The SRGS dictates that an item may 
not have a weight unless its immediate enclosing tag is a 
<one-of>. SRGS does, however, allow for a single item to be 
enclosed in a <one-of> in order to specify a weight where 
one would not otherwise be allowed. Since speech 
recognition systems typically have weights on all arcs, this 
limitation on the SRGS weight attribute is significant. 

Also important, the repeat-prob attribute can only be used 
with the SRGS repeat looping attribute. Recall this attribute 
implements the EBNF loop extensions for Kleene operations. 
In this example, “repeat = ‘1-‘” is equivalent to +. An 
additional limitation is that repeat probability values must lie 
between 0.0 and 1.0.  This complicates matters for 
recognizers that utilize logarithmic probabilities.  

If recursion is allowed, grammars may be authored in 
XML-SRGS without this dual Mealy/Moore nature in favor 
of a strict Moore-style FSM.  The grammar in Fig. 3 would 
be represented as shown below without repeat probabilities, 
but with recursive rules: 

<grammar> 
     <rule> 
 <item> a </item> 
  <one-of> 
       <item weight='4'> <ruleref uri="#B"/> </item> 
  </one-of> 
        </rule> 
        <rule id="B"> 
 <item> b </item> 
                 <item> <ruleref uri="#C"/> </item> 
        </rule> 

 
 

Fig. 2. FSM for regexp a(bc)+ 



        <rule id="C"> 
  <item> c </item> 
  <one-of> 
       <item weight='.43'> <ruleref uri="#C"/> </item> 
       <item> <ruleref special="NULL"> </item> 
 </one-of> 
        </rule> 
</grammar> 

This avoids the use of a repeat probability on node ‘c’ by 
putting a weight on the recursive rule reference at the end of 
this grammar.  

3.  SOFTWARE ARCHITECTURE 

Most industry standard grammar specifications, such as 
JSGF and XML-SRGS, cannot be directly converted into a 
finite state machine representation to be used for speech 
recognition purposes.  In order to convert to a finite state 
machine, we must convert the high-level grammar to the 
lowest level of the Chomsky hierarchy.  We represent this 
form using normalized BNF which consists of the following 
rule types: 

 
A → a,B 
A → B 
A → ε 
 

Where ‘A’ and ‘B’ are non-terminal symbols, ‘a’ is a 
terminal symbol, and ‘ε’ is the epsilon symbol.  From this 
lowest-level representation, the conversion to a finite state 
machine representation is relatively straightforward.  It is 
also easy to directly convert to a high-level grammar 
representation. 

Rather than implement conversions directly from high-
level representations to normalized BNF, we chose to use an 
intermediate ABNF format.  This approach has two main 
advantages.  The first is that JSGF and XML-SRGS were 
both designed for easy mapping to an ABNF.  The second is 
that classic algorithms exist for conversion from ABNF to 
normalized BNF. 

Once the underlying theoretical structures of each format 
were understood in detail, it was clear that producing a 
verifiably robust conversion tool required a software process 
with specific modules, corresponding to the theoretical stages 
of the conversion. The first stage would create a common 
ABNF grammar format to which any other format could be 
converted; the ABNF-SRGS was an obvious choice. The 
next stage would entail processing the ABNF to remove 
extensions and thus standardize representation of weights and 
probabilities.  Thus, we designed our conversion process to 
include the following steps and corresponding software 

modules: 1) convert the XML-SRGS, or JSGF to an 
equivalent ABNF, 2) convert the ABNF to remove the EBNF 
extensions and produce a clean BNF with or without 
recursion, 3) convert the BNF to XML-SRGS, JSGF, or IHD. 
The redesigned conversion process is shown in Fig. 4. 

3.1  JSGF/XML-SRGS to ABNF Conversion 

Clearly, a primary challenge in converting from JSGF or 
XML-SRGS to ABNF is the transformation of syntax. As 
previously noted, the JSGF syntax is very similar to ABNF 
and this transformation is trivial. Transformation of the 
XML-SRGS syntax, however, requires some explanation. 
The basic XML-SRGS tokens and rule references map easily 
to ABNF terminals and non-terminals. XML-SRGS <item/> 
tags are used to denote grouping; as such, they map well to 
ABNF parentheses.  

The XML-SRGS markup attributes, however, do not map 
so clearly to ABNF. While the repeat=’0-‘ and repeat=’1-‘ 
item attributes can be converted into the Kleene star and plus, 
respectively, XML-SRGS also allows for repeat attributes 
such as repeat=’m-n’. Such detail cannot be represented in 
ABNF. Thus, conversion from XML-SRGS includes the 
duplication of such repeats into enumerated alternatives, as 
illustrated in Fig. 5. 

As mentioned in Section 0, if recursion is allowed, XML-
SRGS may be viewed as describing FSMs with weights 
placed on items, rather than transitions. Likewise, JSGF 
places weights on items. This corresponds to a Moore finite 
state machine [10].  However, the finite state machines used 
in IHD and common to many speech recognition systems are 
of the Mealy variety, with weights on arcs. Hence, a 
conversion is necessary.  

We chose to implement this Moore to Mealy machine 
transformation during the conversion to ABNF due to the 
differences in weight specification techniques between JSGF 
and XML-SRGS. While JSGF is an exclusively Moore 
specification, XML-SRGS, as previously discussed, 
additionally allows for the attachment of probabilities to the 
conceptual equivalent of Kleene closures, repeat attributes. 
This added complexity requires that the JSGF and XML-
SRGS Mealy to Moore conversions be executed in separate 
modules. 

 
 

Fig. 3. FSM for XML Weights and Probabilities

 
 

Fig. 4. Conversion Design 



3.2  ABNF to BNF conversion 

ABNF uses regular expression operators to avoid the 
recursion inherent in most BNF grammars. Thus, the 
conversion from ABNF to BNF will, in general, increase the 
number of productions. This conversion is primarily 
concerned with the simplification of ABNF rules containing 
regular expression operators into combinations of BNF 
productions.  Table 1 illustrates a few examples of ABNF 
grammars and their BNF equivalents. 

Our developed algorithm for this conversion is centered 
around the expression of a grammar through description of its 
transitions.  The first step in each iteration of this algorithm is 
to find a transition corresponding to the concatenation 
operator, the Kleene star, or the Kleene plus.  Once a 
transition is located, conversion proceeds through 
determination of the set of symbols to the left and the set of 
symbols to the right of the transition (i.e., the “to”s and 
“from”s).  Treatment of each transition in this manner results 
in a complete description of the associated grammar in a 
simple BNF form for easy conversion to an accepting FSM. 

In our system, this conversion operates by examining each 
concatenation token, Kleene star token, and Kleene plus 
token in all nesting levels of a given production and 
determining what, if any, transition it implies.  Determination 
of involved symbols is aided by the recursive functions, 
“findLeftSymbols” and “findRightSymbols”, which return 
sets containing the left and right symbols for a given 
transition token. For example, the conversion of 

a,b,((c,d)|(e,f))+ begins with the examination of the first 
concatenation symbol.  In this case, findLeftSymbols and 
findRightSymbols return “a” and “b”, respectively. The next 
treated symbol is the second concatenation symbol.  In this 
case, findLeftSymbols returns “b” and findRightSymbols 
recursively discovers and returns “c” and “e”.  The third and 
fourth concatenation symbols are straightforward in the 
manner of the first.  The final treated symbol is the Kleene 
plus.  In this case, findLeftSymbols and findRightSymbols 
are both called on the preceding expression.  Then, rules are 
created to indicate transitions from each right symbol to each 
left symbol.  This example is illustrated in Fig 6.  

Although this example does not include multiple rules or 
non-terminal symbols, the inclusion of these items is a simple 
matter.  For each occurrence of a non-terminal symbol, the 
findLeftSymbol or findRightSymbol method, as the case may 
be, should be called upon the expression corresponding to the 
expansion of the given non-terminal. 

3.3  BNF to FSM conversion 

Once a grammar is in a BNF representation, conversion to 
a finite-state machine is straightforward.  This conversion 
involves scanning the set of BNF rules, and identifying 
unique non-terminal/terminal symbol pairs.  These pairs 
correspond to nodes in the resulting FSM.  The arcs of the 
FSM are derived from the concatenation operators between 
terminal and non-terminal symbols.  For instance, the FSM of  
Fig. 7 can be represented by the following normalized BNF: 

 
S::=A 
A::=a,B 
B::=b,C 
B::=b,A 
C::=c,T 
T::=ε 

 
The non-terminal/terminal symbol pairs are in bold to show 
that three unique nodes have been identified in this graph.  
The concatenation operators are represented by the ‘,’ 
character, and translate into arcs. 

4.  SUMMARY AND CONCLUSIONS 

Supporting popular CFG-based language model formats 
has been an important priority in our research.  The important 
nuances of each CFG format implementation have presented 
equal challenges to producing robust conversion tools. 
Further, assignment of weights and probabilities for these 
styles must be carefully considered in converting to other 
formats, including CFG or regular grammars.  We have 
addressed these issues by incorporating additional stages and 
corresponding software modules in our process which 
perform generic conversions to and from common EBNF and 
BNF grammar formats. These enhancements have advanced 
an important goal for the speech research community — 

 
Fig. 5. Enumerated alternatives 

Table 11. ABNF-BNF equivalence 
 

ABNF BNF 
S::= A | B S::=A 

S::=B 
S::=(A)+ S::=A1 

A1::=A, A1 
A1::=A 

S::=(A)* S::=A1 
A1::=A, A1 
A1::= ε 



producing verifiably robust conversion tools to support 
popular CFG-based language model standards.  

The software modules developed for this research are in 
the public domain, and numerous tools in our speech 
recognition toolkit currently utilize these conversions.  
Related software in our toolkit includes a graphical language 
network design tool, which allows construction of a language 
model in all of the formats of Section 0, and a language 
model tester, which tests for equality of language models in 
varying formats. 
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Fig. 7. FSM for (a,b)+c 

 
 

Fig. 6. ABNF to BNF example 

 
 

Fig. 7. FSM for (a,b)+c 


