
A Unified Language Model Architecture
for Web-based Speech Recognition Grammars

Wesley Holland, Daniel May, Julie Baca, Georgios Lazarou and Joseph Picone

Center for Advanced Vehicular Systems

Mississippi State University
{wholland, may, baca, glaz, picone}@cavs.msstate.edu

Abstract — Supporting popular language model grammar formats,
such as JSGF and XML-SRGS, has been an important step forward
for the speech recognition community, particularly with respect to
integration of human language technology with Internet-based
technologies. Industry standard formats, though conceptually
straightforward implementations of context free grammars, contain
restrictions that pose serious challenges when applied to aspects of
the speech recognition problem. This paper compares and contrasts
these formats, discusses the implications for speech recognition
systems, and presents a unified language model architecture to
support transparent conversion between various language model
formats. This architecture requires the conversion of higher-level
grammar specifications such as the JSGF and SRGS into lower-
level theoretical structures such as Augmented Backus-Naur form
and Standard Backus-Naur form. The public domain implementation
of this architecture provides a framework for future advancements
in language model conversion and web-based speech recognition
applications.

Keywords — context free grammars, grammar transformations,
speech recognition

1. INTRODUCTION

Several industry standard grammar specifications such as
the Java Speech Grammar Format (JSGF) [1] and the W3C
XML Speech Recognition Grammar Specification (XML-
SRGS) [1] were created to support development of voice-
enabled Internet applications. While these standards allow for
the specification of context free grammars (CFGs), most
language models for automatic speech recognition have a
regular grammar equivalent and can therefore be modeled as
finite state machines (FSMs). To support language model
creation using these standards, we developed a suite of
software tools in our public domain speech recognition
toolkit [3] to convert between these grammar formats.

Issues of theoretical equivalence and restrictions on
conversions between regular and context free grammars have
been studied and described extensively. No algorithm has
been proven to perform conversions from arbitrary CFGs
generating regular languages to FSMs without assuming
certain restrictions on the grammar, such as the absence of
center-embedded non-terminals [4]. However, software tools
have been developed for conversions between FSMs and
CFGs which assume such restrictions on the grammars
handled [5]. A similar restriction is assumed in the dynamic
grammar compilation described in [6]. This work examined

the use of finite-state transducers for dynamic grammar
compilation, and thus focused on this aspect rather than the
complexities of specific CFG to FSM conversions.

Some commercial toolkits also provide conversions
between specific CFGs, e.g., XML-SRGS to JSGF [7] or to a
specific FSM. The difficulty with commercial products,
however, is that conversion to FSMs for other recognition
engines may not be easily supported. In addition, our
experience has shown that the specifics of each of the
individual CFG-based Internet grammar formats present
unique and significant challenges. No publication to date has
adequately articulated in detail the challenges of converting
these CFGs to FSMs in a manner that is modular and
extensible, and therefore more easily used and widely
applicable. For example, the treatment of weights and
probabilities in XML-SRGS differs fundamentally from that
common to most speech recognition systems by treating
weights on loops differently than weights on non-repeating
arcs. XML-SRGS thus requires a level of interpretation that
other CFG formats may not. Such features heighten the need
for modular software architecture built upon the appropriate
theoretical abstractions. The remainder of this paper
describes the technical issues encountered in the design and
implementation of our conversion process along with our
solutions to these issues and offers insight into future
development of robust, general purpose, and verifiable
language model conversion tools.

2. GRAMMAR FORMATS

This section provides an overview of existing language
model grammar specifications for the Internet and examines
how these are used in speech recognition systems. First,
however, for reference in the following sections, we mention
our internal language model format, known as ISIP
Hierarchical Digraph (IHD).

Similar to the numerous recognizer-specific language
model representations in common use, IHD is implemented
as a set of hierarchically layered FSMs.

As shown in Fig. 1, each FSM layer is a generic directed
graph class or DiGraph. IHD binds these layers of FSMs
together into levels. The top-most level contains a single
DiGraph, with the nodes of this DiGraph mapping to more
complete DiGraphs at the level below it. For example, the

top-most layer might represent the sentence level, the level
below that the word level, the next the state level.

Our goal was to provide a bidirectional conversion tool
that could systematically convert to and from JSGF and
XML-SRGS, i.e., down to the phone and state level, so that
recognition could be performed in these popular formats by
our speech engine. While not all recognition systems
supporting alternate grammar formats provide this capability,
we believe that it is an important feature that reduces
development efforts and experimental setup time. We also
required the tool to provide the same level of conversion in
reverse in order to allow our internal language models to be
used on other recognition systems.

The subtle but important distinctions between JSGF and
XML-SRGS proved challenging to the task of developing
general purpose conversion tools. However, our deepened
understanding of these nuances led to the design of a modular
software architecture providing conversion tools for these
and future grammar formats. The remainder of this section
presents key theoretical and syntactic features of each format,
including similarities and differences. Section 0 presents the
developed unified language model architecture.

2.1 BNF and ABNF

JSGF and XML-SRGS are theoretically equivalent in
expressive and computational power, with both adhering in
principle to Backus-Naur Form (BNF) [8], a formal notation
for CFGs, and more specifically to two equivalent variants:
Extended BNF (EBNF) [9] and Augmented BNF (ABNF).
Many detailed descriptions of BNF and its variants exist. We
briefly introduce key features relevant to our discussion.

Stated simply, BNF defines a method for describing
production rules in a CFG, including terminal and non-
terminal symbols for rules, and a selection of alternatives
among rules. Though numerous variants of the syntax exist,
an example rule in a BNF grammar might be:

<A> ::= |c

where non-terminals are represented in capital letters, A, B,
surrounded by brackets <> and can appear on the lefthand
side (LHS) or righthand side (RHS) of the rule demarcated

by the := symbol. Terminals are often expressed in lower
case (though not required), but more importantly can appear
only on the rule RHS. While concatenation is often implied,
it can, for emphasis, be explicit. In such cases, concatenation
is typically expressed with the comma. Finally, selection or
branching among alternative rule definitions is expressed by
the | symbol.

BNF also allows the use of recursive rules in a grammar.
Such rules directly or indirectly reference themselves. An
example of direct recursion might be: <A> ::= a<A>. The
use of directly or indirectly recursive rules is useful to
represent repetitive actions in an FSM. Consider the simple
FSM in Fig. 2. This FSM recognizes the regular expression,
a(bc)+ that could be represented in BNF with the production
rules:

<S> ::= <A>
<A>::= aB
 ::= (bc)|(bcB)

The use of the non-terminal B on the RHS in rule 3 is
recursive and indicates that subgraph bc is a cycle that can be
repeated one or more times. However, for simple rules such
as this, the cycle in this FSM could be represented using the
Kleene + operator, a standard notation for regular
expressions which denotes 1 or more repetitions. EBNF
extends BNF to support the use of structures such as the *
and + for repetition, as well as others. (EBNF also has many
variants, but its origins date to [9].) This allows for the
creation of a more intuitive set of production rules for regular
expressions, so that rules A and B above can be reduced to:

<A> ::= a (bc)+

2.2 JSGF and XML-SRGS

The lack of standardized specification for many concepts
essential for speech recognition made BNF and ABNF less
directly useful for this purpose. This led to the creation of
the first industrial grammar specification, JSGF. Although
JSGF and XML-SRGS both provide expressive equivalence
to EBNF, they differ wildly in structure. For instance, the
rule in Fig. 2 could be represented in JSGF as:

<A> = a(bc)+;

Note that the + operator is supported directly as well as the
use of parentheses. Consider the same rule in XML- SRGS:

<rule>
 <item> a </item>
 <item repeat=’1-‘>
 <item> b</item>
 <item> c </item>
 </item>

 </rule>

Fig. 1. IHD Format

The <rule> tag marks this as a production rule. The terminal
symbols are marked with <item> tags, and the “repeat= ‘1-‘”
attribute on the <item> grouping surrounding the non-
terminals b and c denotes the Kleene + operation (1 or more
repetitions) applied to these tokens.

Clearly, the JSGF syntax is more similar to EBNF than
XML-SRGS. The differences are due in large part to their
origins: XML was designed initially as a markup language
for general Internet usage and later modified to provide
support for spoken language; JSGF was designed from the
outset to support spoken language applications. The W3C
SRGS attempted to address these issues first, by using JSGF
as a theoretical model in defining the XML-SRGS, and
second, by developing a standard specification for ABNF [2].
ABNF is an EBNF variant, with origins dating back to
Arpanet. Any ABNF-SRGS can be mapped to XML-SRGS.
The previous example could be written as shown below,
using *1 for + before the item (bc) to be repeated:

<A> = a *1 (bc)

The subtle distinctions between syntaxes complicated the
task of identifying underlying theoretical structures. Beyond
the syntax issues, however, JSGF and XML-SRGS include
programmatic constructs such as scope resolution, as well as
methods for specifying weights, an essential feature for
practical speech recognition.

Another interesting set of issues arose with respect to
recursion. While a conformant JSGF grammar processor
must provide support for recursive rules (right recursive), this
support is optional for conforming XML-SRGS processors.
Though a detailed discussion is beyond the scope of this
paper, several arguments can be made in favor of this
support. First, any right recursive rule can be rewritten using
the Kleene * and + operators where more appropriate.
Second, speech recognizers typically use regular grammars,
which must be either left or right linear, and thus can contain
only left or right recursion. since including this capability
would not affect grammars which did not support recursion,
but the reverse was not true, we chose to include it in all our
grammar format conversion tools.

Other specific features of XML with respect to weights
and probabilities complicated our design decisions. These
are discussed below.

2.3 XML-SRGS Weights and Probabilities

In XML-SRGS, the structures available for specification
of probabilistic alternation do not correspond in a straight-
forward manner to weighted transitions of a FSM. These
structures take the form of the weight attribute and the

repeat-prob attribute. It is important to note that in XML-
SRGS, these are two different logical entities. During
translation to an accepting FSM, these attributes contribute in
a complex manner to the determination of arc transition
weights; specifically, weight attributes correspond to weights
on the nodes of a Moore-machine style FSM and repeat-prob
attributes correspond to weights on backward-facing arcs of a
Mealy-machine style FSM. This characteristic voids the
possibility of utilizing standard Mealy-Moore conversions on
an XML-SRGS grammar and complicates the XML-SRGS to
accepting FSM translation. An XML-SRGS grammar for the
FSM in Fig. 3 using both the weight attribute and the repeat-
prob attribute is shown below:

<grammar>
 <rule>
 <item> a </item>
 <one-of>
 <item weight='4'> b </item>
 </one-of>
 <item repeat='1-' repeat_prob='.43'> c </item>
 </rule>
</grammar>

The first item in this grammar, a, has no weight since its
incoming arc has no weight. The second item, b, has a weight
on its node which may be interpreted as a weight on the
transition from a to b. The SRGS dictates that an item may
not have a weight unless its immediate enclosing tag is a
<one-of>. SRGS does, however, allow for a single item to be
enclosed in a <one-of> in order to specify a weight where
one would not otherwise be allowed. Since speech
recognition systems typically have weights on all arcs, this
limitation on the SRGS weight attribute is significant.

Also important, the repeat-prob attribute can only be used
with the SRGS repeat looping attribute. Recall this attribute
implements the EBNF loop extensions for Kleene operations.
In this example, “repeat = ‘1-‘” is equivalent to +. An
additional limitation is that repeat probability values must lie
between 0.0 and 1.0. This complicates matters for
recognizers that utilize logarithmic probabilities.

If recursion is allowed, grammars may be authored in
XML-SRGS without this dual Mealy/Moore nature in favor
of a strict Moore-style FSM. The grammar in Fig. 3 would
be represented as shown below without repeat probabilities,
but with recursive rules:

<grammar>
 <rule>
 <item> a </item>
 <one-of>
 <item weight='4'> <ruleref uri="#B"/> </item>
 </one-of>
 </rule>
 <rule id="B">
 <item> b </item>
 <item> <ruleref uri="#C"/> </item>
 </rule>

Fig. 2. FSM for regexp a(bc)+

 <rule id="C">
 <item> c </item>
 <one-of>
 <item weight='.43'> <ruleref uri="#C"/> </item>
 <item> <ruleref special="NULL"> </item>
 </one-of>
 </rule>
</grammar>

This avoids the use of a repeat probability on node ‘c’ by
putting a weight on the recursive rule reference at the end of
this grammar.

3. SOFTWARE ARCHITECTURE

Most industry standard grammar specifications, such as
JSGF and XML-SRGS, cannot be directly converted into a
finite state machine representation to be used for speech
recognition purposes. In order to convert to a finite state
machine, we must convert the high-level grammar to the
lowest level of the Chomsky hierarchy. We represent this
form using normalized BNF which consists of the following
rule types:

A → a,B
A → B
A → ε

Where ‘A’ and ‘B’ are non-terminal symbols, ‘a’ is a
terminal symbol, and ‘ε’ is the epsilon symbol. From this
lowest-level representation, the conversion to a finite state
machine representation is relatively straightforward. It is
also easy to directly convert to a high-level grammar
representation.

Rather than implement conversions directly from high-
level representations to normalized BNF, we chose to use an
intermediate ABNF format. This approach has two main
advantages. The first is that JSGF and XML-SRGS were
both designed for easy mapping to an ABNF. The second is
that classic algorithms exist for conversion from ABNF to
normalized BNF.

Once the underlying theoretical structures of each format
were understood in detail, it was clear that producing a
verifiably robust conversion tool required a software process
with specific modules, corresponding to the theoretical stages
of the conversion. The first stage would create a common
ABNF grammar format to which any other format could be
converted; the ABNF-SRGS was an obvious choice. The
next stage would entail processing the ABNF to remove
extensions and thus standardize representation of weights and
probabilities. Thus, we designed our conversion process to
include the following steps and corresponding software

modules: 1) convert the XML-SRGS, or JSGF to an
equivalent ABNF, 2) convert the ABNF to remove the EBNF
extensions and produce a clean BNF with or without
recursion, 3) convert the BNF to XML-SRGS, JSGF, or IHD.
The redesigned conversion process is shown in Fig. 4.

3.1 JSGF/XML-SRGS to ABNF Conversion

Clearly, a primary challenge in converting from JSGF or
XML-SRGS to ABNF is the transformation of syntax. As
previously noted, the JSGF syntax is very similar to ABNF
and this transformation is trivial. Transformation of the
XML-SRGS syntax, however, requires some explanation.
The basic XML-SRGS tokens and rule references map easily
to ABNF terminals and non-terminals. XML-SRGS <item/>
tags are used to denote grouping; as such, they map well to
ABNF parentheses.

The XML-SRGS markup attributes, however, do not map
so clearly to ABNF. While the repeat=’0-‘ and repeat=’1-‘
item attributes can be converted into the Kleene star and plus,
respectively, XML-SRGS also allows for repeat attributes
such as repeat=’m-n’. Such detail cannot be represented in
ABNF. Thus, conversion from XML-SRGS includes the
duplication of such repeats into enumerated alternatives, as
illustrated in Fig. 5.

As mentioned in Section 0, if recursion is allowed, XML-
SRGS may be viewed as describing FSMs with weights
placed on items, rather than transitions. Likewise, JSGF
places weights on items. This corresponds to a Moore finite
state machine [10]. However, the finite state machines used
in IHD and common to many speech recognition systems are
of the Mealy variety, with weights on arcs. Hence, a
conversion is necessary.

We chose to implement this Moore to Mealy machine
transformation during the conversion to ABNF due to the
differences in weight specification techniques between JSGF
and XML-SRGS. While JSGF is an exclusively Moore
specification, XML-SRGS, as previously discussed,
additionally allows for the attachment of probabilities to the
conceptual equivalent of Kleene closures, repeat attributes.
This added complexity requires that the JSGF and XML-
SRGS Mealy to Moore conversions be executed in separate
modules.

Fig. 3. FSM for XML Weights and Probabilities

Fig. 4. Conversion Design

3.2 ABNF to BNF conversion

ABNF uses regular expression operators to avoid the
recursion inherent in most BNF grammars. Thus, the
conversion from ABNF to BNF will, in general, increase the
number of productions. This conversion is primarily
concerned with the simplification of ABNF rules containing
regular expression operators into combinations of BNF
productions. Table 1 illustrates a few examples of ABNF
grammars and their BNF equivalents.

Our developed algorithm for this conversion is centered
around the expression of a grammar through description of its
transitions. The first step in each iteration of this algorithm is
to find a transition corresponding to the concatenation
operator, the Kleene star, or the Kleene plus. Once a
transition is located, conversion proceeds through
determination of the set of symbols to the left and the set of
symbols to the right of the transition (i.e., the “to”s and
“from”s). Treatment of each transition in this manner results
in a complete description of the associated grammar in a
simple BNF form for easy conversion to an accepting FSM.

In our system, this conversion operates by examining each
concatenation token, Kleene star token, and Kleene plus
token in all nesting levels of a given production and
determining what, if any, transition it implies. Determination
of involved symbols is aided by the recursive functions,
“findLeftSymbols” and “findRightSymbols”, which return
sets containing the left and right symbols for a given
transition token. For example, the conversion of

a,b,((c,d)|(e,f))+ begins with the examination of the first
concatenation symbol. In this case, findLeftSymbols and
findRightSymbols return “a” and “b”, respectively. The next
treated symbol is the second concatenation symbol. In this
case, findLeftSymbols returns “b” and findRightSymbols
recursively discovers and returns “c” and “e”. The third and
fourth concatenation symbols are straightforward in the
manner of the first. The final treated symbol is the Kleene
plus. In this case, findLeftSymbols and findRightSymbols
are both called on the preceding expression. Then, rules are
created to indicate transitions from each right symbol to each
left symbol. This example is illustrated in Fig 6.

Although this example does not include multiple rules or
non-terminal symbols, the inclusion of these items is a simple
matter. For each occurrence of a non-terminal symbol, the
findLeftSymbol or findRightSymbol method, as the case may
be, should be called upon the expression corresponding to the
expansion of the given non-terminal.

3.3 BNF to FSM conversion

Once a grammar is in a BNF representation, conversion to
a finite-state machine is straightforward. This conversion
involves scanning the set of BNF rules, and identifying
unique non-terminal/terminal symbol pairs. These pairs
correspond to nodes in the resulting FSM. The arcs of the
FSM are derived from the concatenation operators between
terminal and non-terminal symbols. For instance, the FSM of
Fig. 7 can be represented by the following normalized BNF:

S::=A
A::=a,B
B::=b,C
B::=b,A
C::=c,T
T::=ε

The non-terminal/terminal symbol pairs are in bold to show
that three unique nodes have been identified in this graph.
The concatenation operators are represented by the ‘,’
character, and translate into arcs.

4. SUMMARY AND CONCLUSIONS

Supporting popular CFG-based language model formats
has been an important priority in our research. The important
nuances of each CFG format implementation have presented
equal challenges to producing robust conversion tools.
Further, assignment of weights and probabilities for these
styles must be carefully considered in converting to other
formats, including CFG or regular grammars. We have
addressed these issues by incorporating additional stages and
corresponding software modules in our process which
perform generic conversions to and from common EBNF and
BNF grammar formats. These enhancements have advanced
an important goal for the speech research community —

Fig. 5. Enumerated alternatives

Table 11. ABNF-BNF equivalence

ABNF BNF
S::= A | B S::=A

S::=B
S::=(A)+ S::=A1

A1::=A, A1
A1::=A

S::=(A)* S::=A1
A1::=A, A1
A1::= ε

producing verifiably robust conversion tools to support
popular CFG-based language model standards.

The software modules developed for this research are in
the public domain, and numerous tools in our speech
recognition toolkit currently utilize these conversions.
Related software in our toolkit includes a graphical language
network design tool, which allows construction of a language
model in all of the formats of Section 0, and a language
model tester, which tests for equality of language models in
varying formats.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation (NSF) under Grant No. IIS-0414450.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the NSF.

REFERENCES

[1] Java Speech Grammar Format Specification, Version 1, Sun
Microsystems Developer Network, October 26, 1998 (see
http://java.sun.com/products/java-media/speech/forDevelopers/ JSGF/JSGF).
[2] A. Hunt and S. McGlashan, Eds., W3C Speech Recognition Grammar
Specification Version 1.0, March 16, 2004 (see
http://www.w3.org/TR/speech-grammar/).
[3] J. Picone, et al., “A Public Domain C++ Speech Recognition Toolkit,”,
ISIP, Mississippi State University, Mississippi State, MS, USA, March 2003.

[4] N. Chomsky, “On Certain Formal Properties of Grammars,” Info. and
Control, Vol. 2, 1959, pp. 137-167.
[5] M. Mohri, “Weighted Grammar Tools: The GRM Library,” in J.C.
Junqua and G. van Noord (eds), Robustness in Language and Speech
Technology, .Kluwer Academic Publishers, 2000.
[6] J. Schalkwyk, L. Hetherington, and E. Story, “Speech Recognition with
Dynamic Grammars Using Finite-State Transducers,” Eurospeech 2003, pp.
1969-1972, 2003.
[7] "Converting JSGF to SRGS," http://publib.boulder.ibm.com/
infocenter/pvcvoice/51x/index.jsp?topic=/com.ibm.voicetools.grammar.doc/t
grj2srgs.html, IBM Corporation, White Plains, New York, USA, April 2006.
[8] P. Naur, “Revised Report on the Algorithmic Language Algol 60,”
Com. of the ACM, Vol. 7, No. 12, pp. 735–736, 1963.
[9] N. Wirth, “What Can We Do About the Unnecessary Diversity of
Notation for Syntactic Definitions,” Com. of the ACM, Vol. 20, No. 11, pp.
822–823, 1977.
[10] J. Hopcroft, R. Motwani, J. Ullman, Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 2001.

Fig. 7. FSM for (a,b)+c

Fig. 6. ABNF to BNF example

Fig. 7. FSM for (a,b)+c

