
A Distributed Prototyping Environment for Human Language Technology

 Theban Stanley, Julie Baca, Miao Liu and Joseph Picone

 Center for Advanced Vehicular Systems
Mississippi State University

{stanley, baca, liu, picone}@cavs.msstate.edu

Abstract – The DARPA Communicator program has fuelled the
design and development of impressive human language technology
applications. Its distributed framework has offered numerous
benefits to the research community, including reduced prototype
development time, sharing of components across sites, and provision
of a standard evaluation platform. It has also enabled development
of client-server applications with complex inter-process
communication between modules. However, this latter feature,
though beneficial, introduces complexities which reduce overall
system robustness to failure. In addition, the ability to handle
multiple users and multiple applications from a common interface is
not innately supported. In this paper, we describe our enhancements
to the original Communicator architecture to address robustness
issues and to support a multiple multi-user application capability.
These enhancements have been evaluated using a series of
experiments and they have shown a 7.2% improvement in the
robustness of the system. These enhancements are available in our
public domain toolkit.

Keywords – DARPA Communicator, multi-user/application
environment, state machine architecture, handshaking.

1. INTRODUCTION

Early human language technology systems were designed
in a monolithic fashion. As these systems became more
complex, this design became untenable. In its place, the
concept of distributed processing evolved wherein the
monolithic structure was decomposed into number of
functional components that could interact through a common
protocol [1]. This distributed framework was readily accepted
by the research community and has been a cornerstone for the
advancement in cutting edge human language technology
prototype systems.

Once distributed systems became the widely accepted
implementation of human language technologies, there arose
a need for a common architecture that would support
reusability and compatibility between the modules developed
at different sites. Many projects were conducted with the goal
of creating a common open source platform for HLT. Some
of the notable projects included Advanced Language
Engineering Platform (ALEP) [2], General Architecture for
TEXT Engineering (GATE) [2] and TIPSTER project [2]
started in the mid 1990s. Most of these projects were initiated
to produce a common architecture for text based applications
such as information retrieval, information extraction and

automatic text summarization which would improve
document processing efficiency and cost effectiveness.

The Communicator program was funded by DARPA for
the purpose of creating open source architecture for spoken
language applications. It was one of the first architectures to
provide a conversational and multi-modal interface for
human language technologies [2]. The Communicator
architecture was designed using the MIT Galaxy II
system [3]. The wide availability of Communicator
compatible components, such as speech recognition and
dialog management made it valuable to speech researchers.
Its success is evident from the wide variety of applications
that were developed using the Communicator architecture
which include navigation systems [4], weather information
systems [5] and travel planning systems [6].

Most of the above mentioned architectures have been
predominantly research-oriented. Widespread
commercialization of HLT has led to web-based technology
platforms. Some of the successful technology includes
Nuance’s SpeechObjects [7] which is based on VoiceXML.
Philip’s SpeechMania [8] is an online architecture based on
High-level Dialogue Definition Language (HDDL) which is
Philip’s special purpose programming language [8].

In our laboratory, we used the DARPA Communicator
architecture to design and develop a human language system
consisting of four applications, namely, the Speech analysis,
Speech recognition, Speaker verification and Dialog system
application. Figure 1 shows the intial Dialog system
prototype. The plug-and-play capability of the Communicator
architecture is well-known for reducing prototype
development time by enabling sharing of components across
sites, allowing research groups to specialize in specific
technologies and share others. It also provides a standard
platform for evaluation of systems developed by different
laboratories. Within this platform, multiple servers
communicate through a common protocol programmed in the
“hub”. Figure 1 illustrates the use of this hub and spoke
architecture for our Dialog system. The servers include the
speech recognition module [4], database and dialog
management modules [4], developed in our lab and the
natural language parser and generation modules [9] from the
Center for Spoken Language Processing, University of
Colorado.

The features noted above proved invaluable in reducing
our initial development time. However we also encountered
certain vulnerabilities in the architecture during this phase
and the need for additional capabilities in the subsequent
expansion of our system to include multiple applications.
This paper describes design enhancements made to the
original Communicator architecture to address these needs,
including automated support of multiple multi-user
applications through a common interface, improvements on
robustness to failure, and enhanced debugging. Finally, we
present measurements of system performance improvements
and plans for future development.

2. ORIGINAL ARCHITECTURE

During the initial design phase, we experienced
communication deadlocks among servers and memory
management issues that were difficult to debug. Basic
logging mechanisms were provided to address some of these
issues, but certain desirable features were not available, such
as automated server startup, error-detection and correction.
We anticipated such issues would grow in number and
complexity as we added multiple multi-user applications.

As an example, the user interface for our system ran as a
client program on a laptop with the computational servers
running on a workstation. The original architecture serviced
multiple users, but required manual server startup, including
the port allocation to avoid port conflicts. Further, it required
manual detection and correction of server errors by restarting
them from the workstation. In either case, startup or error
detection, the laptop and workstation may not be in close
proximity. Clearly, one solution to the latter problem was to
enhance the system robustness to failure. We describe our
efforts to enhance this capability later in this section.
However, no such solution will remove all errors and their
potential grows as the number of applications and users
increases. It is important, therefore, to also provide graceful
error management. To address these issues, we developed a
module to automate server startup as well as server error
detection and correction.

Supporting multiple applications also required a common
interface that allows the user to choose from the applications
and coordinates inter-process communication with each
application server and process. We designed and integrated
this enhanced functionality with the server management
module as well.

With respect to robustness, the Communicator architecture
provides a basic structure called a “frame” for
communication among servers and processes [10]. This
structure implicitly allows a strict “handshaking” protocol,
but does not require or provide an implementation of such a
protocol. We found that implementing and enforcing such a
protocol became critical for system robustness as the number
and complexity of our applications grew. We also developed
debugging tools with corresponding diagnostics and visual
displays specific to this protocol.

3. ARCHITECTURAL ENHANCEMENTS

Our first and most critical need concerned automating
server startup, error detection and correction. Secondly, we
required a common interface to allow users to select among
applications. In addition, the need for robustness to error and
improved debugging capabilities were heightened with
multiple applications.

3.1. Automated Server Management

Automated server management became critical with the
addition of multiple applications. Though the Communicator
process monitor provides an interface to start and terminate
servers, it requires manual monitoring. To address this issue,
we designed the Process Manager module that automatically
starts and controls all server processes in the prototype
system architecture. Figure 2 shows an overview of the multi
user architecture for multiple applications.

When a user starts a new application, the client program
requests the Process Manager to start the respective servers
and the hub. The Process Manager performs this startup task
by invoking a Java Process Object. The Java Process Object
enables the Process Manager module to control all server

Fig. 2. The Process Manager module controls multiple applications and
servers.

Fig. 1. An overview of DARPA Communicator-based dialog system
architecture.

processes. The Process Manager module can create a process,
wait on a process, perform input/output on the process and
even check the exit status of the process. If a server process
fails for any reason, the Process Manager detects the failure
and sends a message to the client side forcing the user to
restart the demo. In a multi-user environment, port allocation
also needs special attention. The Process Manager allocates
port numbers and ensures no two servers are assigned the
same port.

3.2. Common Application Interface

Support for multiple applications required providing a
common interface from which users could select an
application of interest. We designed our Demo Selector
module to provide the desired interface and coordinate with
the Process Manager module to start the required servers.

The Demo Selector interface displays a single screen with
icons for each of the four applications. Once the user selects
an application, the Demo Selector loads and displays the user
interface needed for the specific application. Figure 3 shows
the Demo Selector interface for the four applications,
superimposed with the user interface for the Speech Analysis
application, after it has been selected. The client program
sends a Communicator frame with a key-value pair
containing the name of the application that was selected.
Upon receiving the message in this frame, the Process
Manager starts the required servers. The Demo Selector also
has a network configuration menu as referenced in Figure 3
that allows the user to set the IP address of the server
machine and port through which the client program
communicates with the process manager.

3.3. Improvements on System Robustness

Improving system robustness to failure was a primary
focus of our enhancements. As the foundation of our redesign
strategy, we targeted a simple application, Speech Analysis.
Our approach entailed using the implicit capabilities of the
Communicator to enhance reliability of inter-process
communication between clients and servers. This section
describes how we implemented a state machine architecture
to support a basic handshaking protocol between the client
and servers using frames.

Figure 4 shows the state machine architecture and basic
handshaking supported between the Speech Analysis client
and the Signal Detector server. We used a simple
handshaking protocol with signals and acknowledgements,
each implemented as Communicator frames sent via the hub.
The states and handshaking protocol support three major
interaction phases between client and server, 1) preparing for
data transfer; 2) data transfer it self, and 3) end of data
transfer. For phase 1, the client begins in the Initialization
state, during which it establishes connection with the hub. It
then transitions to the Audio_Ready state and sends an
audio_ready signal to the Signal Detector server to prepare it

for audio data transfer. The client then waits for an
acknowledgement of the audio_ready signal from the Signal
Detector server, and once received, it transitions to the
Audio_Ready_Ack state.

Phase 2, data transfer, begins when the client then
transitions to the Data_Transfer state and sends packets of
audio data in Communicator frames to the server. For each
frame of data sent, the client waits for an acknowledgement
from the server, which checks each for validity. If the server
receives a frame that is invalid, it does not send an
acknowledgement signal, but generates an error message,
written to a log file. The client will not send further data until
it receives an acknowledgement. If data transfer completes
successfully, the Signal Detector server detects endpoints and
passes the endpointed data to the client. The client then sends
an end of utterance signal to the Signal Detector server and
waits for an acknowledgement. On receiving the end-of-
utterance signal, the Signal Detector server sends an
acknowledgement signal to the client and resets itself to the
initial state. The handshaking protocol described in this
example is implemented for all applications and has
eliminated server failures and deadlocks due to

Fig. 4. Handshaking between the Speech Analysis client and the Signal
Detector server

Fig. 3. Demo Selector and Speech Analysis user interface

communication errors.

 4. PERFORMANCE IMPROVEMENTS

The following section discusses performance
improvements achieved by analyzing the enhancements
quantitatively and qualitatively.

4.1. Quantitative Analysis

A series of experiments are discussed which provide the
necessary data in measuring the robustness improvements
achieved due to the enhancements.

4.1.1. Experiment 1. Table 1shows the performance data for
386 queries spanning through five different query types. This
data was gathered early in our development efforts, prior to
our enhancements. Out of the 386 queries, 96.92% “passed”
while 3 % “failed” due to a server error or a deadlock. These
386 queries were re-run after the architectural enhancements,
and we were successfully able to reduce these failures related
to the robustness of the system. One limitation of the
experiment is that it tested the system against baselines
established using the text mode i.e., Natural Language
Processing modules. Though necessary to test against these
established baselines first, these are not sufficient results to
fully measure overall robustness improvements.

4.1.2. Experiment 2. The second experiment consists of one
non-native, male speaker, who had prior experience using the
system, performing a set of tasks which were randomly
selected from a task pool. In this experiment, a task consisted
of one or more interaction of the user with the system. An
example of a task is “Use speech mode in the Dialog system
to query the distance between two places”. The pool had a
total of 38 tasks out of which 8 tasks were hypothesized to
fail for the original architecture under certain system
specifications. The other 30 tasks were hypothesized to be
successfully completed in both the architectures and covered
a wide variety of usage categories as shown in Figure 5. A
random generator was used to pick 30 trials from the task
pool and the user performed these trails. In this experiment,

all the 30 trials were successfully completed under the
enhanced architecture and only 24 trials passed the original
architecture. This experiment confirmed that these tasks did
fail in the original architecture which was not tested before.
Though a random number generator removes a level of bias,
it is not based on observed system usage, and, as such, does
not necessarily capture typical usage patterns.

4.1.3. Experiment 3. In this experiment, five, first-time users
performed tasks pertaining to 24 usage scenarios. A scenario
is a general situation under which the user is asked to use the
system. A scenario may require performing one or more
tasks. For example, consider a user is planning a vacation to
the city of her choice. She needs to decide on a travel
itinerary by using the system. This is a general scenario and
the user may choose to accomplish this by performing several
tasks using the system. Each task may require a single query
or multiple queries to accomplish. This is referred to as an
interaction which is defined as one response from the system
to accomplish a specific task. Among the five users, there
were three males and two females. These included one native
speaker and four non-native speakers. The usage scenarios
required performing such tasks as recording for varying time

Table 1. Performance data for a dialog application

 Before Enhancements After Enhancements

Failed (%)
Failed (%)

Queries # of
utterances Passed (%)

Server
Errors Deadlocks

Passed (%)
Server
Errors Deadlocks

Address 98 100 0.00 0.00 100.00 0.00 0.00

Direction 219 95.43 2.28 2.28 100.00 0.00 0.00

Distance 23 91.31 8.70 0.00 100.00 0.00 0.00

List of places 36 100 0.00 0.00 100.00 0.00 0.00

Building 10 100 0.00 0.00 100.00 0.00 0.00

TOTAL 386 96.92 1.80 1.29 100.00 0.00 0.00

Dialog System

Speech
Mode

Text
Mode

Address
Direction
Distance

List of places
Building

Basic Recording

Address
Direction
Distance

List of places
Building

Can be further sub divided
depending on whether these
queries access the MySql
database or the website.

Fig. 5. Categorization tree of the scenarios.

durations and querying for information. The scenarios were
carefully drafted not to prompt the user for a specific query.
Before participating in the experiment, each user was
presented with a set of instructions and was allowed to take a
10-minute practice session to get familiar with the
functionality of the system. Once the practice session was
over, the user engaged in the usage scenarios for the
experiment, using both architectures, with a time limit of 30
minutes for each. The user performed the tasks, first on the
enhanced architecture followed by the original architecture to
prevent any robustness improvement trend that may occur
due to the user’s familiarity with the system. The user was
asked to cease testing if there was a system failure or he/she
exceeded the allotted time of 30 minutes.

As shown in Table 2, a total of 129 interactions were
successfully completed using the enhanced architecture and
only 76 interactions could be performed successfully using
the original architecture. Table 2 illustrates that “Dialog
system: Speech mode” category shows an evident
improvement in robustness compared to the other two
categories. This is expected, as the “Dialog system: Speech
mode” is the most complex task in the HLT system. Inference
cannot be made from the data obtained from this experiment
as they may overstate the actual improvement in robustness
because the user was asked to abort the experiment following
a system failure which prevented her from performing the
subsequent tasks. To obtain a more focused measure of
robustness improvement, further experimentation was needed
to target the “Dialog system: Speech mode” category.

4.1.4. Experiment 4. This experiment was designed to target
the “Dialog system: Speech mode” category to measure the
robustness improvement on the most complex tasks in the
HLT system. The limitations of Experiment 3 were addressed
by asking the user to request a system restart in the event of a
system failure and to continue testing for the full 30 minutes.

Five users were asked to perform 9 usage scenarios
restricted to the “Dialog system: Speech mode” category.
Among the five users, there were four males and one female.

The user pool consisted of one native speaker and four non-
native speakers. Each user was provided with a series of
scenarios originating from the user’s visit to Starkville from
her city of residence. The users were initially presented with
a set of instructions and were allowed to take a 10-minute
practice session to get familiar with the functionality of the
system. The user performed tasks from 9 different scenarios
with a maximum time duration of 30 minutes per session on
each architecture.

As shown in Table 3, 55 interactions were completed
successfully using the enhanced architecture while only 51
interactions were completed successfully using the original
architecture. The results show a 7.2% improvement in the
robustness on the most complex set of tasks defined for the
HLT system.

4.2 Qualitative Analysis

Most of the enhancements to the DARPA architecture did
not exist in the original architecture and were developed out

Table 2. Three categories of experimental data.

Number of interactions
successfully attempted
by User 1

Number of interactions
successfully attempted by

User 2

Number of interactions
successfully attempted by
User 3

Number of interactions
successfully attempted by
User 4

Number of interactions
successfully attempted by
User 5

Category

Enhanced Original Enhanced Original Enhanced Original Enhanced Original Enhanced Original

Basic recording
9

8

8

6

7

6

12

8

9

8

Dialog system:
Speech mode

8

7

9

9

9

4

12

3

9

0
Dialog system:

Text mode

5

8

9

9

7

0

8

0

8

0
Total number of

interactions

22

23

26

24

23

10

32

11

26

8

The number of interactions that passed the enhanced architecture: 129 The number of interactions that passed the original architecture: 76

Users Number of interactions
that passed successfully
the Enhanced
architecture

Number of interactions
that passed successfully
the Original architecture

User 1 10 8

User 2 10 11

User 3 9* 9

User 4 16* 13

User 5 10 10

Total number of
interactions that passed
successfully

55

51

* indicates that a server error was experienced but the enhancements prevented a
system failure.

Table 3. The number of interactions that passed the original and the
enhanced architecture in experiment 4.

of necessity for better error handling and debugging
capabilities. The newer modules that have been built into the
enhanced architecture have added powerful capabilities
which were not innately supported by the original
architecture. The two main qualitative enhancements are the
Process Manager module and better debugging capabilities.
The Process Manager module provides automated server
management and built-in capability to handle multi user
applications. The multi user and multiple application
capability were not available in the original architecture.

Therefore, these two enhancements cannot be evaluated
against a baseline. Nonetheless, these capabilities clearly
extend the complexity of applications that can be deployed,
and thereby, the fundamental research issues that can be
investigated using this architecture. The enhanced
architecture has provided better logging of communication
which along with the State machine architecture and basic
handshaking capabilities has provided a more efficient
debugging paradigm for the system. The enhancements
related to better debugging capabilities were achieved
through rigorous design meetings and reviews. The debug
window which is a part of the user interface provides an
excellent tool for the user to debug the system when she has
no access to the log files on the server side. The user interface
was designed by a team that included experts in human-
computer interaction and graphic design.

Further, both the debugging and user interface
enhancements were reviewed and evaluated by two
categories of users respectively, 1) software developers
programming this technology and 2) principle investigators
who presented these technologies to research sponsors.
Figure 6 illustrates the use of the debug window. In this
particular case, the client program had not received an
acknowledgement from the server for the data frame it sent.
The user can use the debug window and browse through the
Communicator messages to reconstruct the exact scenario
that led to the failure. Thus the debug window provides a
better debugging interface for the user which never existed in
the original architecture.

5. CONCLUSIONS

The DARPA Communicator architecture significantly
advanced human language technology and, has played a
critical role in the design and development of human
language technology applications in our laboratory. In
developing these applications, we have addressed
vulnerabilities in this architecture through several important
enhancements, including automated server startup, error
detection and correction, support for multiple multi-user
applications, increased system robustness to failure, and
improved debugging capabilities. Quantitative analysis has
shown a 7.2% improvement in the robustness of the system.

Further experimentation includes allowing the system to
respond to user queries continuously for prolonged time
periods under carefully controlled conditions so that
meaningful data are collected from these experiments. The
experimental design reported here will serve as basis for
prolonged studies. We also plan to enhance the Process
Manager to create and manage server processes on different
host machines to increase the computational power available
for applications. This capability will enable us to run
applications at significantly greater speed on our
supercomputer clusters.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation (NSF) under Grant No. IIS-0414450.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the NSF.

REFERENCES

[1] K. Hacioglu and B. Pellom., “A Distributed Architecture for Robust
Automatic Speech Recognition,” Proc. IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, pp. 1234-1234, Hong Kong, April 2003.
[2] F. Olsson, ``A requirement analysis for an open set of human language
technology tasks.'' In Proceedings of Workshop on Portability Issues in
Human Language Technologies, Las Palmas, Spain, June.
[3] S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and V. Zue, "Galaxy-
II: A reference architecture for conversational system development," in these
Proceedings, Sydney, Australia, 1998.
[4] J. Baca, J. Zheng, H. Gao, and J. Picone, “Dialog Systems for
Automotive Environments,” in Proc. European Conf. on Speech Comm. and
Tech., Geneva, Switzerland, pp. 1929-1932, Sep. 2003.
[5] V. Zue, et al, "JUPITER: A telephone-based conversational interface
for weather information," IEEE Trans. on Speech and Audio Processing,
vol. 8, no. 1, January 2000.
[6] A. Rudnicky, et al., "Creating natural dialogs in the Carnegie Mellon
Communicator system," Proc. Eurospeech, pp. 1531--1534, 1999.
[7] “Nuance SpeechObjects,” http://www.w3.org/TR/ speechobjects/.
[8] “Philips SpeechMania,”
http://www.nist.gov/speech/publications/darpa98/html /ww20/ww20.htm.
[9] Ward, W. and Pellom, B., “The CU Communicator System,” in Proc.
IEEE Automatic Speech Recognition and Understanding Workshop,
Keystone, Colorado, USA. pp. 1234-1234, December 1999.
[10] “Galaxy Communicator,” SourceForge, 2003
http://sourceforge.net/projects/communicator.

Fig. 6. A debug window showing an audio data transfer error

