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Abstract – The DARPA Communicator program has fuelled the 
design and development of impressive human language technology 
applications. Its distributed framework has offered numerous 
benefits to the research community, including reduced prototype 
development time, sharing of components across sites, and provision 
of a standard evaluation platform. It has also enabled development 
of client-server applications with complex inter-process 
communication between modules. However, this latter feature, 
though beneficial, introduces complexities which reduce overall 
system robustness to failure. In addition, the ability to handle 
multiple users and multiple applications from a common interface is 
not innately supported. In this paper, we describe our enhancements 
to the original Communicator architecture to address robustness 
issues and to support a multiple multi-user application capability. 
These enhancements have been evaluated using a series of 
experiments and they have shown a 7.2% improvement in the 
robustness of the system. These enhancements are available in our 
public domain toolkit.  
 
Keywords – DARPA Communicator, multi-user/application 
environment, state machine architecture, handshaking. 

1. INTRODUCTION 

Early human language technology systems were designed 
in a monolithic fashion. As these systems became more 
complex, this design became untenable. In its place, the 
concept of distributed processing evolved wherein the 
monolithic structure was decomposed into number of 
functional components that could interact through a common 
protocol [1]. This distributed framework was readily accepted 
by the research community and has been a cornerstone for the 
advancement in cutting edge human language technology 
prototype systems.  

Once distributed systems became the widely accepted 
implementation of human language technologies, there arose 
a need for a common architecture that would support 
reusability and compatibility between the modules developed 
at different sites. Many projects were conducted with the goal 
of creating a common open source platform for HLT. Some 
of the notable projects included Advanced Language 
Engineering Platform (ALEP) [2], General Architecture for 
TEXT Engineering (GATE) [2] and TIPSTER project [2] 
started in the mid 1990s. Most of these projects were initiated 
to produce a common architecture for text based applications 
such as information retrieval, information extraction and 

automatic text summarization which would improve 
document processing efficiency and cost effectiveness.  

The Communicator program was funded by DARPA for 
the purpose of creating open source architecture for spoken 
language applications. It was one of the first architectures to 
provide a conversational and multi-modal interface for 
human language technologies [2]. The Communicator 
architecture was designed using the MIT Galaxy II 
system [3]. The wide availability of Communicator 
compatible components, such as speech recognition and 
dialog management made it valuable to speech researchers. 
Its success is evident from the wide variety of applications 
that were developed using the Communicator architecture 
which include navigation systems [4], weather information 
systems [5] and travel planning systems [6]. 

Most of the above mentioned architectures have been 
predominantly research-oriented. Widespread 
commercialization of HLT has led to web-based technology 
platforms. Some of the successful technology includes 
Nuance’s SpeechObjects [7] which is based on VoiceXML. 
Philip’s SpeechMania [8] is an online architecture based on 
High-level Dialogue Definition Language (HDDL) which is 
Philip’s special purpose programming language [8]. 

In our laboratory, we used the DARPA Communicator 
architecture to design and develop a human language system 
consisting of four applications, namely, the Speech analysis, 
Speech recognition, Speaker verification and Dialog system 
application. Figure 1 shows the intial Dialog system 
prototype. The plug-and-play capability of the Communicator 
architecture is well-known for reducing prototype 
development time by enabling sharing of components across 
sites, allowing research groups to specialize in specific 
technologies and share others. It also provides a standard 
platform for evaluation of systems developed by different 
laboratories. Within this platform, multiple servers 
communicate through a common protocol programmed in the 
“hub”. Figure 1 illustrates the use of this hub and spoke 
architecture for our Dialog system. The servers include the 
speech recognition module [4], database and dialog 
management modules [4], developed in our lab and the 
natural language parser and generation modules [9] from the 
Center for Spoken Language Processing, University of 
Colorado. 



The features noted above proved invaluable in reducing 
our initial development time. However we also encountered 
certain vulnerabilities in the architecture during this phase 
and the need for additional capabilities in the subsequent 
expansion of our system to include multiple applications. 
This paper describes design enhancements made to the 
original Communicator architecture to address these needs, 
including automated support of multiple multi-user 
applications through a common interface, improvements on 
robustness to failure, and enhanced debugging. Finally, we 
present measurements of system performance improvements 
and plans for future development. 

2. ORIGINAL ARCHITECTURE 

During the initial design phase, we experienced 
communication deadlocks among servers and memory 
management issues that were difficult to debug. Basic 
logging mechanisms were provided to address some of these 
issues, but certain desirable features were not available, such 
as automated server startup, error-detection and correction. 
We anticipated such issues would grow in number and 
complexity as we added multiple multi-user applications.  

As an example, the user interface for our system ran as a 
client program on a laptop with the computational servers 
running on a workstation. The original architecture serviced 
multiple users, but required manual server startup, including 
the port allocation to avoid port conflicts. Further, it required 
manual detection and correction of server errors by restarting 
them from the workstation. In either case, startup or error 
detection, the laptop and workstation may not be in close 
proximity. Clearly, one solution to the latter problem was to 
enhance the system robustness to failure. We describe our 
efforts to enhance this capability later in this section. 
However, no such solution will remove all errors and their 
potential grows as the number of applications and users 
increases. It is important, therefore, to also provide graceful 
error management. To address these issues, we developed a 
module to automate server startup as well as server error 
detection and correction.  

Supporting multiple applications also required a common 
interface that allows the user to choose from the applications 
and coordinates inter-process communication with each 
application server and process. We designed and integrated 
this enhanced functionality with the server management 
module as well. 

With respect to robustness, the Communicator architecture 
provides a basic structure called a “frame” for 
communication among servers and processes [10]. This 
structure implicitly allows a strict “handshaking” protocol, 
but does not require or provide an implementation of such a 
protocol. We found that implementing and enforcing such a 
protocol became critical for system robustness as the number 
and complexity of our applications grew. We also developed 
debugging tools with corresponding diagnostics and visual 
displays specific to this protocol. 

3. ARCHITECTURAL ENHANCEMENTS 

Our first and most critical need concerned automating 
server startup, error detection and correction. Secondly, we 
required a common interface to allow users to select among 
applications. In addition, the need for robustness to error and 
improved debugging capabilities were heightened with 
multiple applications. 

3.1. Automated Server Management  

Automated server management became critical with the 
addition of multiple applications. Though the Communicator 
process monitor provides an interface to start and terminate 
servers, it requires manual monitoring. To address this issue, 
we designed the Process Manager module that automatically 
starts and controls all server processes in the prototype 
system architecture. Figure 2 shows an overview of the multi 
user architecture for multiple applications. 

When a user starts a new application, the client program 
requests the Process Manager to start the respective servers 
and the hub. The Process Manager performs this startup task 
by invoking a Java Process Object. The Java Process Object 
enables the Process Manager module to control all server 

Fig. 2. The Process Manager module controls multiple applications and 
servers.

 
Fig. 1. An overview of DARPA Communicator-based dialog system 
architecture. 



processes. The Process Manager module can create a process, 
wait on a process, perform input/output on the process and 
even check the exit status of the process. If a server process 
fails for any reason, the Process Manager detects the failure 
and sends a message to the client side forcing the user to 
restart the demo. In a multi-user environment, port allocation 
also needs special attention. The Process Manager allocates 
port numbers and ensures no two servers are assigned the 
same port. 

3.2. Common Application Interface 

Support for multiple applications required providing a 
common interface from which users could select an 
application of interest. We designed our Demo Selector 
module to provide the desired interface and coordinate with 
the Process Manager module to start the required servers. 

The Demo Selector interface displays a single screen with 
icons for each of the four applications. Once the user selects 
an application, the Demo Selector loads and displays the user 
interface needed for the specific application. Figure 3 shows 
the Demo Selector interface for the four applications, 
superimposed with the user interface for the Speech Analysis 
application, after it has been selected. The client program 
sends a Communicator frame with a key-value pair 
containing the name of the application that was selected. 
Upon receiving the message in this frame, the Process 
Manager starts the required servers. The Demo Selector also 
has a network configuration menu as referenced in Figure 3 
that allows the user to set the IP address of the server 
machine and port through which the client program 
communicates with the process manager. 

3.3. Improvements on System Robustness 

Improving system robustness to failure was a primary 
focus of our enhancements. As the foundation of our redesign 
strategy, we targeted a simple application, Speech Analysis. 
Our approach entailed using the implicit capabilities of the 
Communicator to enhance reliability of inter-process 
communication between clients and servers. This section 
describes how we implemented a state machine architecture 
to support a basic handshaking protocol between the client 
and servers using frames.  

Figure 4 shows the state machine architecture and basic 
handshaking supported between the Speech Analysis client 
and the Signal Detector server. We used a simple 
handshaking protocol with signals and acknowledgements, 
each implemented as Communicator frames sent via the hub. 
The states and handshaking protocol support three major 
interaction phases between client and server, 1) preparing for 
data transfer; 2) data transfer it self, and 3) end of data 
transfer. For phase 1, the client begins in the Initialization 
state, during which it establishes connection with the hub. It 
then transitions to the Audio_Ready state and sends an 
audio_ready signal to the Signal Detector server to prepare it 

for audio data transfer. The client then waits for an 
acknowledgement of the audio_ready signal from the Signal 
Detector server, and once received, it transitions to the 
Audio_Ready_Ack state.  

Phase 2, data transfer, begins when the client then 
transitions to the Data_Transfer state and sends packets of 
audio data in Communicator frames to the server. For each 
frame of data sent, the client waits for an acknowledgement 
from the server, which checks each for validity. If the server 
receives a frame that is invalid, it does not send an 
acknowledgement signal, but generates an error message, 
written to a log file. The client will not send further data until 
it receives an acknowledgement. If data transfer completes 
successfully, the Signal Detector server detects endpoints and 
passes the endpointed data to the client. The client then sends 
an end of utterance signal to the Signal Detector server and 
waits for an acknowledgement. On receiving the end-of-
utterance signal, the Signal Detector server sends an 
acknowledgement signal to the client and resets itself to the 
initial state. The handshaking protocol described in this 
example is implemented for all applications and has 
eliminated server failures and deadlocks due to 

 
Fig. 4. Handshaking between the Speech Analysis client and the Signal 
Detector server 

 
Fig. 3.  Demo Selector and Speech Analysis user interface 
 



communication errors. 

 4. PERFORMANCE IMPROVEMENTS 

The following section discusses performance 
improvements achieved by analyzing the enhancements 
quantitatively and qualitatively. 

4.1. Quantitative Analysis 

A series of experiments are discussed which provide the 
necessary data in measuring the robustness improvements 
achieved due to the enhancements.     

 
4.1.1. Experiment 1. Table 1shows the performance data for 
386 queries spanning through five different query types. This 
data was gathered early in our development efforts, prior to 
our enhancements. Out of the 386 queries, 96.92% “passed” 
while 3 % “failed” due to a server error or a deadlock. These 
386 queries were re-run after the architectural enhancements, 
and we were successfully able to reduce these failures related 
to the robustness of the system. One limitation of the 
experiment is that it tested the system against baselines 
established using the text mode i.e., Natural Language 
Processing modules. Though necessary to test against these 
established baselines first, these are not sufficient results to 
fully measure overall robustness improvements. 

 
4.1.2. Experiment 2. The second experiment consists of one 
non-native, male speaker, who had prior experience using the 
system, performing a set of tasks which were randomly 
selected from a task pool. In this experiment, a task consisted 
of one or more interaction of the user with the system. An 
example of a task is “Use speech mode in the Dialog system 
to query the distance between two places”. The pool had a 
total of 38 tasks out of which 8 tasks were hypothesized to 
fail for the original architecture under certain system 
specifications. The other 30 tasks were hypothesized to be 
successfully completed in both the architectures and covered 
a wide variety of usage categories as shown in Figure 5. A 
random generator was used to pick 30 trials from the task 
pool and the user performed these trails. In this experiment, 

all the 30 trials were successfully completed under the 
enhanced architecture and only 24 trials passed the original 
architecture. This experiment confirmed that these tasks did 
fail in the original architecture which was not tested before. 
Though a random number generator removes a level of bias, 
it is not based on observed system usage, and, as such, does 
not necessarily capture typical usage patterns. 

  
4.1.3. Experiment 3. In this experiment, five, first-time users 
performed tasks pertaining to 24 usage scenarios. A scenario 
is a general situation under which the user is asked to use the 
system. A scenario may require performing one or more 
tasks. For example, consider a user is planning a vacation to 
the city of her choice. She needs to decide on a travel 
itinerary by using the system. This is a general scenario and 
the user may choose to accomplish this by performing several 
tasks using the system. Each task may require a single query 
or multiple queries to accomplish. This is referred to as an 
interaction which is defined as one response from the system 
to accomplish a specific task. Among the five users, there 
were three males and two females. These included one native 
speaker and four non-native speakers. The usage scenarios 
required performing such tasks as recording for varying time 

Table 1.  Performance data for a dialog application 
 

 Before  Enhancements After Enhancements 

Failed (%) 
Failed (%) 

Queries #  of 
utterances Passed (%) 

Server 
Errors Deadlocks 

 
 

Passed (%) 
Server  
Errors Deadlocks 

Address 98 100     0.00 0.00 100.00 0.00 0.00 

Direction 219 95.43     2.28 2.28 100.00 0.00 0.00 

Distance 23 91.31     8.70 0.00 100.00 0.00 0.00 

List of  places 36 100    0.00 0.00 100.00 0.00 0.00 

Building 10 100    0.00 0.00 100.00 0.00 0.00 

TOTAL 386  96.92    1.80 1.29 100.00 0.00 0.00 

Dialog System  

Speech 
Mode

Text
Mode

Address
Direction
Distance

List of places
Building

Basic Recording 

Address
Direction
Distance

List of places
Building

Can be further sub divided 
depending on whether these 
queries access the MySql
database or the website. 

 
Fig. 5. Categorization tree of the scenarios. 



durations and querying for information.  The scenarios were 
carefully drafted not to prompt the user for a specific query.  
Before participating in the experiment, each user was 
presented with a set of instructions and was allowed to take a 
10-minute practice session to get familiar with the 
functionality of the system. Once the practice session was 
over, the user engaged in the usage scenarios for the 
experiment, using both architectures, with a time limit of 30 
minutes for each. The user performed the tasks, first on the 
enhanced architecture followed by the original architecture to 
prevent any robustness improvement trend that may occur 
due to the user’s familiarity with the system. The user was 
asked to cease testing if there was a system failure or he/she 
exceeded the allotted time of 30 minutes. 

As shown in Table 2, a total of 129 interactions were 
successfully completed using the enhanced architecture and 
only 76 interactions could be performed successfully using 
the original architecture. Table 2 illustrates that “Dialog 
system: Speech mode” category shows an evident 
improvement in robustness compared to the other two 
categories. This is expected, as the “Dialog system: Speech 
mode” is the most complex task in the HLT system. Inference 
cannot be made from the data obtained from this experiment 
as they may overstate the actual improvement in robustness 
because the user was asked to abort the experiment following 
a system failure which prevented her from performing the 
subsequent tasks. To obtain a more focused measure of 
robustness improvement, further experimentation was needed 
to target the “Dialog system: Speech mode” category. 
 
4.1.4. Experiment 4. This experiment was designed to target 
the “Dialog system: Speech mode” category to measure the 
robustness improvement on the most complex tasks in the 
HLT system. The limitations of Experiment 3 were addressed 
by asking the user to request a system restart in the event of a 
system failure and to continue testing for the full 30 minutes. 

Five users were asked to perform 9 usage scenarios 
restricted to the “Dialog system: Speech mode” category. 
Among the five users, there were four males and one female. 

The user pool consisted of one native speaker and four non-
native speakers. Each user was provided with a series of 
scenarios originating from the user’s visit to Starkville from 
her city of residence. The users were initially presented with 
a set of instructions and were allowed to take a 10-minute 
practice session to get familiar with the functionality of the 
system. The user performed tasks from 9 different scenarios 
with a maximum time duration of 30 minutes per session on 
each architecture.  

As shown in Table 3, 55 interactions were completed 
successfully using the enhanced architecture while only 51 
interactions were completed successfully using the original 
architecture. The results show a 7.2% improvement in the 
robustness on the most complex set of tasks defined for the 
HLT system.  

4.2 Qualitative Analysis 

Most of the enhancements to the DARPA architecture did 
not exist in the original architecture and were developed out 

  
Table 2. Three categories of experimental data. 
 

Number of interactions 
successfully attempted 
by User 1 

Number of  interactions 
successfully attempted by 

User 2 

Number of interactions 
successfully attempted by 
User 3 

Number of  interactions 
successfully attempted by 
User 4 

Number of  interactions 
successfully attempted by 
User 5 

Category 

Enhanced Original Enhanced Original Enhanced Original Enhanced Original Enhanced Original 

Basic recording   
9 

 
8 

 
8 

 
6 

 
7 

 
6 

 
12 

 
8 

 
9 

 
8 

Dialog system: 
Speech mode  

 
 

8 

 
 

7 

 
 

9 

 
 

9 

 
 

9 

 
 

4 

 
 

12 

 
 

3 

 
 

9 

 
 

0 
Dialog system: 

Text mode  
 
 

5 

 
 

8 

 
 

9 

 
 

9 

 
 

7 

 
 

0 

 
 

8 

 
 

0 

 
 

8 

 
 

0 
Total number of 

interactions 
 

22 
 

23 
 

26 
 

24 
 

23 
 

10 
 

32 
 

11 
 

26 
 

8 
 

The number of interactions that passed the enhanced architecture: 129 The number of interactions that passed the original architecture: 76 

 

Users Number of interactions 
that passed successfully 
the Enhanced 
architecture 

Number of interactions 
that passed successfully 
the Original architecture 

User 1 10 8 

User 2 10 11 

User 3 9* 9 

User 4 16* 13 

User 5 10 10 

Total number of  
interactions that passed 
successfully  

 
55 

 
51 

* indicates that a server error was experienced but the enhancements prevented a 
system failure. 

 
 
Table 3.  The number of interactions that passed the original and the 
enhanced architecture in experiment 4. 



of necessity for better error handling and debugging 
capabilities. The newer modules that have been built into the 
enhanced architecture have added powerful capabilities 
which were not innately supported by the original 
architecture. The two main qualitative enhancements are the 
Process Manager module and better debugging capabilities. 
The Process Manager module provides automated server 
management and built-in capability to handle multi user 
applications. The multi user and multiple application 
capability were not available in the original architecture.  

Therefore, these two enhancements cannot be evaluated 
against a baseline. Nonetheless, these capabilities clearly 
extend the complexity of applications that can be deployed, 
and thereby, the fundamental research issues that can be 
investigated using this architecture. The enhanced 
architecture has provided better logging of communication 
which along with the State machine architecture and basic 
handshaking capabilities has provided a more efficient 
debugging paradigm for the system. The enhancements 
related to better debugging capabilities were achieved 
through rigorous design meetings and reviews. The debug 
window which is a part of the user interface provides an 
excellent tool for the user to debug the system when she has 
no access to the log files on the server side. The user interface 
was designed by a team that included experts in human-
computer interaction and graphic design.  

Further, both the debugging and user interface 
enhancements were reviewed and evaluated by two 
categories of users respectively, 1) software developers 
programming this technology and 2) principle investigators 
who presented these technologies to research sponsors. 
Figure 6 illustrates the use of the debug window. In this 
particular case, the client program had not received an 
acknowledgement from the server for the data frame it sent. 
The user can use the debug window and browse through the 
Communicator messages to reconstruct the exact scenario 
that led to the failure. Thus the debug window provides a 
better debugging interface for the user which never existed in 
the original architecture. 

5. CONCLUSIONS 

The DARPA Communicator architecture significantly 
advanced human language technology and, has played a 
critical role in the design and development of human 
language technology applications in our laboratory. In 
developing these applications, we have addressed 
vulnerabilities in this architecture through several important 
enhancements, including automated server startup, error 
detection and correction, support for multiple multi-user 
applications, increased system robustness to failure, and 
improved debugging capabilities. Quantitative analysis has 
shown a 7.2% improvement in the robustness of the system. 

Further experimentation includes allowing the system to 
respond to user queries continuously for prolonged time 
periods under carefully controlled conditions so that 
meaningful data are collected from these experiments. The 
experimental design reported here will serve as basis for 
prolonged studies. We also plan to enhance the Process 
Manager to create and manage server processes on different 
host machines to increase the computational power available 
for applications. This capability will enable us to run 
applications at significantly greater speed on our 
supercomputer clusters. 
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Fig. 6. A debug window showing an audio data transfer error 


