
Fig. 1: Integration of the fatigue detection system with an Automatic speech 
recognition system. 
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Abstract – Military and civilian experience has shown that long-
duration assignments present increased risk of performance failures 
as the mission progresses. This is due to interruption of normal 
sleep cycles and psychological pressures of the work environment. 
There continues to be a need for a non-intrusive fatigue assessment 
system to successfully monitor the level of alertness of personnel 
during critical missions and activities. Experimental results on 
human voice show that specific phones have a predictable 
dependence on fatigue. Hence, precise phonetic identification and 
alignment are important to voice-based fatigue detection. This 
paper explores techniques for detecting fatigue from voice using 
speech recognition to obtain phonetic alignments. A confidence 
measure was used to filter out less likely word hypotheses from the 
ASR’s output. In this paper   we restricted our analysis to dealing 
with out-of-vocabulary words. The results obtained from voice show 
strong correlation with other standardized tests such as Sleep Onset 
Latency and Sleep, Activity, Fatigue, and Task Effectiveness. 
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1. INTRODUCTION 

The unique characteristics of the military and aviation 
environment make war fighters and civilian pilots 
particularly susceptible to fatigue. Being able to quickly and 
non-intrusively monitor an airman’s or soldier’s level of 
alertness prior to and during the undertaking of a critical 
mission activity would provide commanders with critical 
information regarding personnel assignments and certainly 
save lives and increase the likelihood of mission success. 
Unfortunately, there are no cognitive assessment tests that 
have been proven to be effective in the field under conditions 
of high stress and limited testing time per subject. This paper 
describes an approach to the development of a voice-based 
fatigue prediction system. 

Changes in the articulation of voiced sounds due to fatigue 
could be considered representative of changes in the body’s 
voice production mechanisms. Change in discrete voice 
parameters (such as fundamental frequency and word 
duration) has been reported in the literature, however, no 
single voice characteristic demonstrates a consistent and 
reliable change as the speakers become fatigued [1][2][3]. 
Rather than study any one specific voice parameter, our 
approach is to observe a more holistic representation of the 
speech signal, the cepstral transformation associated with 
specific speech phonemes. The coefficients of this 
transformation, referred to as Mel-frequency cepstral 
coefficients (MFCCs) [4] are used in association with an 

automatic speech recognition system (ASR). 
Therefore, a straightforward way to automate this process 

is to use the output of an ASR system to identify the location 
of key phonemes, as shown in Fig. 1. The time marks 
produced from the recognition segmentation are used to 
identify the corresponding MFCC vectors for a given 
phoneme, and these vectors are in turn used in the fatigue 
detection system. Since these systems tend to be deployed in 
extremely noisy environments, the ASR system must be 
extremely robust, and the fatigue detection system must be 
tolerant of recognition errors. 

Also being a non-intrusive approach, the system must be 
robust to out of vocabulary words. We used a word posterior-
based confidence measure to further improve the overall 
reliability of the system [5]. A reasonable improvement in 
fatigue analysis was observed when confidence measures 
were used for utterances which had out-of-vocabulary words. 
A threshold to reject incorrect or less probable words was 
determined by observing the region of convergence for the 
word posteriors. 

2. USING VOICE TO DETECT FATIGUE 

Whitmore and Fisher have shown that speech data follow 
the same trend as the data from cognitive tests and subjective 
measures of alertness [1]. They also noted a strong circadian 
trend, as the best voice performances occur during normal 
waking hours, and the worst performances occur during 
normal sleeping hours. Satio, et al. reported changes in the 
appearance of sound spectrograms from analysis of specific, 
repeated utterances as a pilot experienced hypoxia prior to a 
fatal F-104 accident [3]. These results support the contention 
that voice characteristics are directly related to the speaker’s 
level of performance which, in turn, is affected by his or her 
level of fatigue. 



2.1 Using MFCCs for Fatigue Cues 

An initial data set, referred to as the Phase I data, was 
developed to further study the effect of fatigue on formant 
frequencies [6]. Ten volunteers were asked to speak 
sentences containing words from a set of 37 words. The 
recordings were made four times a day, before and after a 
night of sleep depravation. Reaction time was measured just 
before making the recordings, and sleep latency was 
measured to determine the general level of fatigue. 
Approximately 12,000 formant frequencies were analyzed, 
and 19 of them showed significant correlation with reaction 
time. Several showed good correlation with the sleep latency 
tests as shown in Table 1. The results from the table show 
that the formant frequencies are related to the subject’s level 
of alertness, which is directly related to the fatigue level of 
the subject. 

Initial Phase I analysis confirmed a dependence between 
formant frequencies and fatigue. Therefore, it became 
necessary to process the recorded speech signal in a manner 
that would reveal the required information (e.g. vocal tract 
response which affects the formant frequencies) from the 
speech data, and this was accomplished by using cepstral 
analysis techniques. 

Cepstral analysis results in the calculation of a discrete 
number of coefficients called cepstral coefficients. With this 
analysis, the entire human speech production process can be 
described by only a few cepstral coefficients. Instead of 
tracking changes in specific vocal metrics, such as formants, 

we can use these cepstral coefficients. These cepstral 
coefficients constitute the Mel Frequency Cepstral 
Coefficients (MFCC). The MFCC feature vector used for 
fatigue analysis contains 36 coefficients. The feature vector is 
comprised of 12 cepstral coefficients, along with their first 
and second time derivatives. Also of interest is how the 
MFCC vector changes as a function of the subject’s level of 
fatigue. Fig. 2 shows an example of how the MFCC vector 
changes over a four-day period of sleep restriction. 

From Phase I analysis, it was found that certain formant 
frequencies are more closely related sleep latency tests than 
others. Hence, it would be useful to analyze the MFCCs of 
different phonemes and determine the phonemes that show 
good variations in the spectral domain due to fatigue. The 
MFCCs for various sounds were analyzed, and the sounds 
that were most affected by fatigue were determined.  

For example, a fatigue analysis was performed on the 
sound ‘t’. A notable change in the MFFC vector was 
observed as the subject became increasingly fatigued. Fig. 2 
gives the correlation of the MFCC vector for different trials 
with the initial trial, and this is described in the legend of 
Fig. 2. It can be observed that the correlation between Trial 1 
(12 hrs awake) and Trial 10 (39 hrs awake) is higher (0.82) 
when compared to the correlation between Trial 1 and 
Trial 21 (78 hrs awake) (0.19). This is an indication that the 
MFCC components change as the subject gets increasingly 
fatigued. So, the correlation metric can be used as a 
prediction metric to determine fatigue.  

2.2 Preliminary Fatigue Experiments 

During a 34-hour period of sleep deprivation, six non-
medicated subjects were asked to recite a list of 31 words at 
six testing times (10:00 AM, 4:00 PM, 10:00 PM, 4:00 AM, 
10:00 AM, and 4:00 PM). These testing times were selected 
to represent circadian high and low points in performance 
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Fig. 2: Changes in the MFCC vector during four days of sleep restriction. 
The vector during Trials 1 and 10 match more closely than the vector at 
Trial 21.

Table 1: Correlation between formant frequency and performance 

Sound                               Formants 
 F1 F2 F3 F4 

[o] clock .486 .339 .710 .565 
[^] upper .416  .352 .689 .680 
[ay]highly .356 .359 .3320 .682 
[iy] keep .511 .241 .396 .228 

[m] matter .574 .567 .343 .118 
[o] 

coughing 
.367 .071 .487 .310 

[n] note .386 .114 .071 .000 
[n] night .389 .095 .095 .192 
[^] fuzzy .324 .187 .388 .243 
[uw] two .360 .122 .205 .298 

[ae] chatter .359 .152 .316 .351 
[ay] time .326 .045 .326 .045 

[ae] cabin .313 .105 .310 .164 
[y] yet    .308 .045 .21 .152 

[U] took .055 .344 .705 .612 
[iy] serene .205  .623 .182 .071  

[n] now .164 .538 .576 .460 
[r] rather .036 .032 .310 .517 
[o] not .045 .265 .164 .109 



[7]. 
Also measured during these testing times was Sleep Onset 

Latency (SOL), which is the gold standard for sleepiness 
testing. This test involves having the test subject lie on a bed 
in a quiet, darkened room and telling the subjects to go to 
sleep. The time that it takes them to fall asleep, as measured 
by an electroencephalogram (EEG), is the sleep onset latency 
(SOL) [8]. Between tests, subjects were allowed low arousal 
activities such as reading and watching TV.  

Fig. 3 shows the group average change in both SOL and 
our voice correlation metric for the sounds ‘p’ and ‘t’ over 
the 34 hour testing period. The correlation coefficient 
between SOL and time awake is -0.825, and between voice 
correlation of sounds ‘p’ and ‘t’ to time awake is -0.89, and -
0.67 respectively. We estimate that time awake accounts for 
68%, 79%, and 45% of the variation of SOL, voice 
correlation of sounds ‘p’ and voice correlation of ‘t’ 
respectively. 

All three metrics show a circadian peak at 16 hours. 
However, the SOL peak is significantly larger than the voice 
metric peaks. Circadian, according to any standard 
dictionary, means “exhibiting periodicity in a 24-hour 
period.” For example, our sleep cycle can be considered to 
have a circadian trend (i.e., we sleep better at night than 
during the day.) Similarly, fatigue levels were observed to be 
higher during normal sleep hours than at regular working 
hours, which explained the circadian trend. The circadian 
pattern has been observed in many alertness versus time 
experiments [7],[8]. This difference in circadian sensitivity 
tends to reduce a correlation coefficient-based quantitative 
comparison.  

3. GENERATING PHONE ALIGNMENTS USING ASR 

The general architecture of the fatigue detection system is 
shown in Fig. 1. The ASR system provides time-aligned 
word (and phone) hypotheses as output. The fatigue 
prediction software relies on ASR to determine the MFCC 

vectors for specific phones. It is critical that the correct 
phones are identified from the input stream of audio data. 
Eight mixture Gaussian Mixture Models (GMMs) were used 
to represent the statistics of the training data. Due to the small 
vocabulary size, a loop grammar was used as a language 
model. The output of the ASR system was one-best phone 
alignments with the word likelihood score annotated to each 
phone hypothesis. The word error rate of the ASR system is 
dependent on various factors which are beyond the scope of 
this paper. 

For fatigue detection, our main interest is in finding the 
presence of certain phones with a high degree of confidence. 
Word error rate is not a very critical factor. Annotating the 
one-best hypothesis with confidence measures would help in 
reducing false hypothesis. A threshold can be used to filter 
less probable words in the final hypothesis. Word posteriors 
computed from word graphs were used as a confidence 
estimate [10]. Experimental results show that the Voice 
Correlation metric comes closer to the SOL test when word 
posteriors are used to filter out less likely words. 
There is an elegant method to compute posterior probabilities 
from word-graphs [5]: 

The probability of passing through the link W is calculated 
by determining the probability of reaching the start node of 
the word from the preceding nodes and the probability of 
leaving the end node to any of the succeeding nodes. The 
former is called the forward probability and the latter as the 
backward probability. A forward-backward type algorithm is 
used to traverse through the lattice and compute the 
probabilities. The right-hand side term in Eq. 1 cannot be 
computed directly, but can be decomposed into likelihood 
and priors using Bayes rule [5] as shown in Eq. 2. 

The numerator term of Eq. 2 is calculated by the forward-
backward algorithm. The denominator term is the byproduct 
of the forward-backward computation and is defined as the 
sum of all paths through the word graph. The purpose of the 
denominator term is to normalize the posterior values. The 
posteriors computed in this manner can be used as a 
confidence measure. The word posteriors are annotated to the 
one best output generated by the ASR system. The 
experiments discussed in this paper show the effectiveness of 
using word posteriors when the input test data contained out 
of vocabulary words (OOVs). 
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Fig. 3: Change in the voice vector Vs change in Sleepiness, SOL, sleep 
onset latency 
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4. EXPERIMENTAL RESULTS 

Analysis was performed on the voice data from two test 
subjects who underwent a night of sleep deprivation. At six 
test epochs, separated by 6 hours, these subjects each recited 
from two word lists. The ASR system was trained to 
recognize words from the training list. During fatigue 
analysis, the speech recognition system was presented words 
from both the training list and the foreign list which 
contained words not in the training set. For both subjects, the 
confidence metric (CM) observed when the speakers recited 
from the first list had a higher average value and smaller 
standard deviation than that observed when the speaker 
recited from the foreign list. Table 2 presents these results. 

The data presented in Table 2, represents the degree of 
overlap between the CM distribution of training words and 
the CM distribution of foreign words. A receiver operating 
characteristic (ROC) curve was plotted to predict the true and 
false “correct word” prediction performance of the CM. A 
ROC plot for one of the subjects is shown in Fig. 4. Using a 
CM threshold value of -75 to flag foreign words, the ROC 
curves had areas of 0.85 and 0.80 for the two subjects. These 
values are benchmarks indicative of a “good” prediction 
performance. 

The confidence metrics’ effect on fatigue prediction 
performance is illustrated in Fig. 5 andFig. 6. Fig. 5 depicts 
the subject’s normalized sleep onset latency (SOL) and 
voice-based fatigue prediction for the sound ‘p’ (Vc) at each 
of the six trials. As can be seen in the figure, the performance 
of the voice metric is best when using voice data from only 
the training set list. Using the voice input of both training set 
and foreign set words, with no confidence metric, little 
agreement is seen between voice and SOL and the error rate 
between them was 0.33. However, by using the CM (with a 

threshold setting of -75) to filter out foreign words the voice-
based prediction is significantly closer to both the SOL and 
the “training input only curves”, and the error rate dropped to 
30%, which is a 9% absolute improvement. 

The cyclic patterns observed in Fig. 5 are due to circadian 
rhythms. Over the 30 hours between Trial 1 and Trial 6, a full 
circadian cycle has elapsed. The SOL reflects the circadian 
influence of an individual’s need to sleep. A more direct way 
to match a speaker’s overall performance and circadian 
influences is to use the speaker’s body temperature and his or 
her time without sleep. This is accomplished using the Sleep, 
Activity, Fatigue, and Task Effectiveness (SAFTE) 
model [11]. 

Fig. 6 shows speaker’s SAFTE score and voice-based 
fatigue prediction for the sound ‘p’ (Vc) at each of the six 
trials. As was the case with the SOL, the SAFTE model is 
closest to the “training list only” words. Using voice input 
containing mixed words (training set and foreign words), the 
CM-based word filter provides a significant fatigue 
prediction improvement over the use of the full mixed word 
input. The error rate between the curves improved from 0.15 
to 0.12, which is a 20% relative improvement. The OOV 
error rate for this experiment was 61.7%. 

Table 2: An analysis of the confidence metric distribution for two speakers 
on different set of words 

 Subject 6 
 Training Foreign 

Average CM -72.22 -81.51 
CM Standard Deviation 3.10 11.34 

 Subject 8 
 Training Foreign 

Average CM -70.24 -82.41 
CM Standard Deviation 3.50 15.16 
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Fig. 5: Comparison of the trend between SOL and voice correlation for 
sound ‘p’ with and without a confidence metric 
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5. CONCLUSIONS 

In this paper we have presented a first attempt to measure 
fatigue detection using a speech recognition system. The 
correlation-based voice metric discussed in this paper 
compares favorably with the gold standard for measuring 
fatigue, sleep onset latency. The correlation measure also 
compares favorably to SAFTE measures. Confidence 
measures played a significant role in fatigue analysis on 
unseen words. The error between the SAFTE and voice based 
fatigue metric was decreased by 20% using confidence 
measures. Future work will be focused on more extensive 
evaluations on a much larger operational database, and on 
ways to improve the robustness of the system to recognition 
errors. 
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Fig. 6: Comparison of the trend between SAFTE and voice correlation for 
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