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ABSTRACT

The design of a HEV involves many design variables that must be optimized for a better HEV performance in terms of fuel economy. In this paper, a non-derivative approach is used for the optimization of a Parallel Hybrid Vehicle using DIRECT (DIviding RECTangles) algorithm. The objective of this study is to increase the overall fuel economy of a Parallel HEV on a composite of city and highway driving. With this approach, the fuel economy of the HEV increased from 28.1mpg to 37.88mpg.
INTRODUCTION

Optimization is the process of minimizing an objective function subject to some constraints on the design variables. The optimization algorithm tries to minimize the objective function (fuel economy in our case) by searching the multidimensional parameter space for the various combinations of the design variables and selecting the best combination at each iteration. Analytical-based optimization of a HEV is simply impossible and cumbersome because deriving an equation of a HEV involving hundreds of parameters is difficult. In a simulation-based optimization, the parallel hybrid vehicle is modeled using the empirical data. Various computer programs like SIMPLEV [1], ADVISOR [2], PSAT [3], V-Elph [4] etc. are available for the analysis of the hybrid vehicles. These simulation tools are looped with the optimizing routines to obtain the objective. A number of optimization toolboxes are available for the optimization of hybrid electric vehicles. Matlab Optimization toolbox 3.0.2 [5], TOMBLAB [6] have built-in algorithms for standard and large-scale optimization. These algorithms solve constrained and unconstrained continuous and discrete problems. Other toolboxes include VisualDOC 2.0 [7], iSIGHT [8] etc. ADVISOR 2002 is selected as the basic simulation tool to study the optimization of the parallel hybrid electric vehicle in this paper. 
ADVISOR: The Advanced Vehicle Simulator (ADVISOR) developed by Department of Energy’s National Renewable Energy Lab, is used for the analysis of conventional, electric, hybrid electric vehicle, and fuel cell vehicles. ADVISOR operates in the MATLAB/Simulink environment. ADVISOR is a backward with limited forward-looking vehicle simulator. It is an empirical model that uses drivetrain component performances to estimate fuel economy and emissions on the given cycle as well as other performance related metrics like the acceleration performance and gradeability. The fuel economy can be assessed on any of the 50 available drive cycles or definitive test procedures can be used under various test conditions. ADVISOR 2002 has some optimization features built-in, including the ability to automatically size the powertrain components subject to user-selectable performance constraints. Additionally, it can use the optimization to select proper control strategy to maximize the fuel economy and minimize emissions. The above two functions are not accessible simultaneously from the ADVISOR user interface instead batch mode is used to run them simultaneously.

The response function of a parallel HEV tends to be nosiy and discontinuous [9]. Gradient based algorithms like Sequential Quadratic Programming (SQP) [10] uses the derivative information and are good at finding local minima. The major disadvantage of local optimizers is that they do not search the entire design space and so cannot find the global minimum. Derivative-free algorithms do not rely on the derivatives and can therefore work exceptionally well when the objective function is noisy and discontinuous. Derivative-free methods are often the best global algorithms because they often must sample a large portion of the design space to be successful. A comparison of the gradient-based and the derivative-free algorithms for the optimization of hybrid electric vehicle is given in [11, 12]. In this paper, the DIRECT algorithm is used for the optimization of HEV powertrain. The DIRECT (DIviding RECTangles) algorithm [13] fundamentally balances local and global search - a method that was extremely robust and can eliminate the need for ad-hoc tuning parameters. The detailed description of DIRECT algorithm is given in the next section. Other widely used global algorithms used in the HEV optimization are Genetic Algorithm and Simulated Annealing [14, 15]. 
DIRECT ALGORITHM: DIRECT is a global optimization algorithm developed by Donald R. Jones [13]. This algorithm is a modification of the standard Lipschitzian approach that eliminates the need to specify the Lipschitz constant [16]. Lipschitz constant is a weighing parameter, which decides the emphasis on the global and the local search [17]. The bigger Lipschitzian constant puts more emphasis on the global search and results in slow convergence. The use of Lipschitz constant is eliminated in [13] by searching all possible values for the Lipchitz constant thus putting a balanced emphasis on both the global and local search. 
The algorithm begins by scaling the design box to a n-dimensional unit hypercube. DIRECT initiates its search by evaluating the objective function at the center point of the hypercube. DIRECT then divides the potentially optimal hyperrectangles by sampling the longest coordinate directions of the hyperrectangle. The sampling is done such that each sampled point becomes the center of its own n-dimensional rectangle or box. This division continues until termination (prespecified iteration limit is reached) or convergence is achieved. The process of division of the rectangles is discussed here. DIRECT employs a simple heuristic to determine the order in which long sides are divided. For example, in the 1st iteration or whenever there is a tie between the rectangles for the longest dimension, a breaking counter 
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 value is trisected. If several long sides are also tied for the lowest 
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 value, then the lowest indexed dimension is selected for trisection [14]. The division of rectangles in first three iterations of a two dimensional problem is shown in Figure 1.
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Fig. 1: First three iterations of the DIRECT algorithm

In this figure the darkened rectangles represents the optimal rectangles selected for division in that particular iteration. The balance between the local and global search in the DIRECT algorithm is made by using all possible weightings of local and global search. The DIRECT makes the efficient trade off by selecting the lower right convex hull of dots as shown in Figure 2.
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Fig. 2: Rectangles selected by DIRECT for further subdivision
This DIRECT algorithm is given below which basically highlights two important steps (selection of optimal rectangles and trisecting them):

1. Normalize the search space to be the unit hypercube. Let c1 be the center point of this hypercube and evaluate f(c1).

2. Identify the set S of potentially optimal rectangles (those rectangles defining the bottom of the convex hull of a scatter plot of rectangle diameter versus f(ci) for all rectangle centers ci) 

3. Choose any rectangle r 
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 S.
4. For the rectangle r:

4a. Identify the set I of dimensions with the maximum side length using the 
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counter. Let δ equal one-third of this maximum side length.

4b. Sample the rectangle containing c at the points c±δei for all i 
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I and divide into thirds along the dimensions in I, where c is the center of the rectangle r and ei is the ith unit vector.

4. Update S. Set S = S – {r}. If S is not empty, go to Step 3. Otherwise go to Step 5.

5. Iterate. Report the results of this iteration, and then go to Step 2. If iteration limit, go to Step 6.
6. Terminate. The optimization is complete. Report
[image: image10.wmf]min

x

, 
[image: image11.wmf]min

f

 and stop. 

PROBLEM STATEMENT: The objective of this paper is to optimize a Hybrid Electric Vehicle to increase the fuel economy on a composite driving cycle. The basic configuration of the parallel HEV used for simulation is given in Table1. The driving cycle is composed of city driving represented by FTP-75(Federal Test Procedure) and the Highway driving is represented by HEFET (Highway Fuel Economy Test). The two drive cycles are shown in Figure 3 and Figure 4
Table 1: Parallel HEV configuration

	Component
	Description

	Fuel Converter
	Geo 1.0 litre SI 41 kW engine scaled to 82 kW

	Motor
	75 kW Westinghouse AC induction motor/inverter scaled to 92 kW

	Battery
	30 modules of 25 Ah each

	Transmission
	Manual 5 speed
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Fig. 3: FET – 75 drive cycle
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Fig. 4: HWFET drive cycle

The fuel economy from each of these drive cycles is combined to get the composite fuel economy. By definition, composite fuel economy is the harmonic average of the SOC-balanced fuel economies during the two separate drive cycles [18]. The composite fuel economy can be calculated as follows:
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where City_FE and Hwy_FE represents the city and highway fuel economies respectively. The optimization is initially limited to four design variables, two of them defining the power ratings of the fuel converter and motor controller. The third variable defines the number of battery modules and the fourth variable defines the maximum Ampere Hour capacity of the battery module. The design variables in ADVISOR with their lower and upper bounds are listed in Table 2.

 Table 2: Design Variables

	Design Variable
	Description
	Lower Bound
	Upper Bound

	fc_pwr_scale
	Fuel converter power rating scaling factor
	1(41 kW)
	3 (123 kW)

	mc_trq_scale
	Motor Controller power rating scaling factor
	0.8(60 kW)
	2.5 (187.5 kW)

	ess_module_num
	Battery number of modules
	11
	35

	ess_cap_scale
	Battery max. Ah capacity scaling factor
	0.333(8.3Ah)
	1(25 Ah)

	cs_lo_soc
	Lower bound on soc
	0.2
	0.5

	cs_high_soc
	Upper bound on soc
	0.55
	1.0


The following constraints are imposed on the design problem.

0 - 60 mph : <= 11.2 s

40 - 60 mph : <= 4.4s

0 - 85 mph : <= 20s

Gradeability : >= 6.5% grade at 55 mph

Difference in required and achieved speeds:<= 3.2 km/h

Difference between initial and final SOC
 : <= 0.5%
results
In the first part the ADVISOR is run with configuration in Table 1 and the design variables in Table 3. The fuel economy was observed to be 28.1 mpg. 

Table 3: Initial design variable values
	Design variable
	Initial Value

	fc_pwr_scale
	2(82kW)

	mc_trq_scale
	1.25(93kW)

	ess_mod_num
	10

	ess_cap_scale
	1(25 Ah)

	cs_lo_soc
	0.6

	cs_high_soc
	0.7


In the second part, the optimization was run with the configuration in Table 1 and the bounds for the design variables in Table 2. Note here that DIRECT does not require specifying a starting point because it always starts from the center point of the design space as its starting point. The optimization was stopped at 19 iterations giving out a fuel economy of 37.88mpg because of no further improvement. The optimization took approximately 24 hours and 539 function evaluations. The optimization resulted in a significant increase of about 9.78 mpg in fuel economy. Table 4 gives a comparison between the fuel economy before and after optimization
Table 4: Comparison of fuel economy

	Fuel Economy

	Before optimization
	After optimization

	28.1 mpg
	37.88 mpg


The design variables after the optimization are given in Table 5. Note here that the values of the design variable given in column 2 does not indicate the starting point of the DIRECT algorithm but indicate the values taken in part I study. It can be seen from Table 5 that the power ratings of the engine and the motor reduced significantly. In the case of the battery, both the number of modules and the Ampere Hour capacity of the modules are increased. The performance comparison of the hybrid Electric Vehicle before and after the optimization is given in Table 6 respectively. It can be seen that the performance is improved compared to the unoptmized vehicle performance except in the greadability and the difference in soc. This deterioration can be understood with the decrease in the fuel converter and motor sizes.

Table 5: Final design variables

	Design Variable
	Initial Value
	Final Value

	fc_pwr_scale
	2(82kW)
	1.037(42.5kW)

	mc_trq_scale
	1.25(92kW)
	0.8315(62.4kW)

	ess_module_num
	10
	18.6(~19)

	ess_cap_scale
	1(25Ah)
	1.4135(35.3Ah)

	cs_lo_soc
	0.6 
	0.4833

	cs_high_soc
	0.7
	0.775


Table 6: Comparison of the HEV performance
	Constraint
	Constraint Value
	Performance before optimization
	Performance after optimization

	0 – 60 mph 
	<=11.2s
	9.8s
	8.8s

	40 – 60 mph
	<=4.4s
	4.8s
	4.3s

	0 – 85 mph
	<=20s
	19.2s
	17.6s

	Greadability @ 55mph
	>=6.5%
	17.5%
	7.2%

	Difference in required and achieved speeds
	2 mph
	0mph
	0mph

	Difference between initial and final SOC [city hwy]
	0.5%
	[0.0% 0.0%]
	[0.02%  -0.43%]


The mass of the vehicle and emissions from the vehicle before and after the optimization are listed in Table 7 and Table 8 respectively. The emissions showed an improvement in the city driving but increased slightly in highway driving.
Table 7: Mass of HEV before and after optimization

	Mass of the vehicle

	pre-optimization
	post-optimization

	1325 kg
	1360 kg


Table 8: Comparison of the emissions

	
	Emissions before optimization
	Emissions after optimization

	
	City
	Hwy/City NOx
	City
	Hwy/City NOx

	HC
	0.691
	0.42
	0.431
	0.52

	CO
	2.563
	
	2.454
	

	NOx
	0.461
	
	0.424
	

	PM
	0
	
	0
	


The detailed DIRECT optimization results are given in Figure 5. From iteration 2 to 7, the objective stays at almost the same level; then at iteration 8, the objective is decreased; from iteration 16 on, the objective keeps at constant value, indicating minimum has been found by the DIRECT algorithm. 
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Fig. 5: The DIRECT optimization results
conclusions AND COmments
The fuel economy of the parallel HEV is increased from 28.1 mpg to 37.88 mpg. The performance, emissions in city driving of the optimized HEV show a great improvement. The power ratings of the fuel converter and motor have considerably been reduced. 
Future work

The number of design variables is limited to six in this study. More design variable relating the control strategy, vehicle will be introduced to see the effect on the fuel economy. The same vehicle will be optimized using PSAT and a comparison of fuel economy will be done. 

The optimization takes more than 20 hours using ADVISOR. This long design time necessitates the development of a more efficient hybrid vehicle simulation model, which is part of our on-going research effort.
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