
ABSTRACT 

This paper describes an open source framework for developing 
speaker recognition systems. Among other features, it supports 
kernel classifiers, such as the support and relevance vector machines. 
The paper also presents results for the IME corpus using Gaussian 
mixture models, which outperforms previously published ones, and 
discusses strategies for applying discriminative classifiers to speaker 
recognition. 

1. INTRODUCTION 

Speech research technologies, such as speech recognition and speaker 
verification/identification systems, require an integration of knowledge across 
several domains, which include signal processing and machine learning. With 
the constant evolution and ever increasing complexity of the speech research 
technology, the development of a state-of-the-art speech recognition system or a 
speaker verification/identification system becomes a time-consuming and 
infrastructure-intensive task. This problem is especially relevant for researchers 
in third-world countries, such as Brazil, where only few research groups have 
access to state-of-the-art systems. Besides, very few groups in such countries 
have access to an industry standard speech corpus. The few corpora that are 
freely available are often too small for serious research. 

Hence, the adoption of public domain software and corpora is very 
important for advancing the state-of-art, and allowing a proper comparison 
among well-established and new techniques. In Brazil, the Military Institute of 
Engineering (IME) has recently released the IME 20023, a Brazilian Portuguese 
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corpus for speaker recognition. This corpus was made available free of charge 
to several research groups. It is potentially the main resource for Brazilian 
speech researchers working in the area of speaker recognition. Together, the 
ISIP public domain technology and the IME corpus, compose an excellent 
framework that can serve as the test bed for comparing various speaker 
recognition technologies. Moreover, this framework also allows for the 
replication of the published results. 

In this paper we present this freely available framework, and describe our 
results of a GMM-based speaker verification system on the IME corpus. We 
show that these results are better, in most cases, than the previously published 
ones. More importantly, all results published in this paper can be easily 
replicated on other sites. All the necessary experimental framework and 
software is available on our web sites. We also present a brief review of 
architectures for using kernel classifiers in speaker recognition, discuss 
associated issues, and present preliminary results for the support vector 
machine (SVM) approach. 

This paper is organized as follows. Section 2 presents an overview of the 
ISIP public domain toolkit. Section 3 briefly discusses kernels classifiers and 
architectures of speaker recognition systems. Finally, in Section 4, we present 
simulation results using GMM and SVM-based speaker recognition systems on 
the IME corpus. Our conclusions are stated in Section 5. 

2. ISIP SPEAKER VERIFICATION SYSTEM 

Since 1994, ISIP has been developing free public domain software for the 
speech research community [1-8]. Since 1998, we have focused on the 
development of a modular, flexible, and extensible recognition research 
environment, which we refer to as the production system [5, 6]. The toolkit 
contains many common features found in modern speech to text systems: a 
GUI-based front end tool that converts the signal to a sequence of feature 
vectors, an HMM-based acoustic model trainer, and a time-synchronous 
hierarchical Viterbi decoder. 

Recently, we have added a SVM trainer, a SVM classifier, and a set of 
supporting utilities to the production system that allows a user to build a hybrid 
HMM/SVM based speech recognition system [7]. We have also added a 
maximum likelihood linear regression (MLLR) technique for speaker 
adaptation, and extended the production system to allow for speaker verification 
experiments. We are also planning to add a hybrid HMM/RVM (relevance 
vector machine) based speech recognition system [8]. All these new features 
will be embedded in the next release (r00_n12) of the production system. 

All the components introduced above are developed based on an extensive 
set of foundation classes (IFCs). IFCs are a set of C++ classes organized as 
libraries in a hierarchical structure. These classes are targeted to satisfy the 
needs of rapid prototyping and lightweight programming without sacrificing the 
efficiency. Some key features include: UNICODE support for multilingual 



applications; math classes that provide basic linear algebra and efficient matrix 
manipulations; memory management and tracking; system and I/O libraries that 
abstract users from details of the operating systems. The complete software 
toolkit and the associated documentation are freely available on-line at 
http://www.isip.msstate.edu/projects/speech/index.html. 

Next, we illustrate the support for speaker recognition in the ISIP toolkit by 
briefly describing the general approach to speaker verification, as shown in 
Figure 1. The ISIP toolkit contains utilities for each of the following stages: 
feature extraction, pattern matching, and decision mechanism. Additionally, an 
enrollment is required to generate the models for each speaker. 

During the speaker verification process, the sequences of feature vectors, 
extracted from the speech signal, are compared to a model representing the 
claimed speaker via pattern matching. The speaker models are obtained from a 
previous enrollment process. An utterance-based score is used to accept or reject 
a speaker through hypothesis testing. 

In the feature extraction stage, the perceptually relevant and meaningful 
information is extracted from the input speech signal. For example, an industry 
standard Mel-frequency cepstral coefficients (MFCC) front end is typically 
employed to extract 12 Mel-frequency cepstral coefficients (MFCC) plus the log 
energy at a frame rate of 100 frames per second. In order to model the spectral 
variation of the speech signal, the first and second order derivatives of the 13 
coefficients are appended to yield a total of 39 coefficients per frame. Another 
popular front end that can be used for speaker recognition is based on the 
perceptual linear prediction (PLP) coefficients. 

In the pattern matching stage, GMM is the most commonly adopted 
technique. More specifically, GMM is a special case of a Bayes classifier that 
obtains the likelihood of an observation using a mixture model λ  of M  
multivariate Gaussians given by: 
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Figure 1 Architecture of a Typical Speaker Verification System 
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where xr  is a D -dimensional feature vector, Mi ,...,1= mixture 

components, ( )xbi
r

are the mixture densities, and ip are the mixture weights. 

Each mixture component is a D -variate Gaussian distribution given by: 
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where iµ is the mean vector and 
i∑ is the covariance of the thi mixture 
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In GMM-based speaker verification, the binary decision to accept or reject 
a claimed identity is based on the likelihood score. If the null-hypothesis ( 0H ) 
represents the fact that the speaker is an imposter, and the alternative 
hypothesis ( 1H ) represents the fact that the speaker is whom he claims to be, 

then, the likelihood ratio )(zAλ of the claimed speaker A  gives us the 
following decision criteria, 
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where )|( 0HzpA represents the conditional density of the likelihood score 
generated by the imposters’ model (or “universal background model”) and 

)|( 1HzpA  represents the conditional density of the likelihood score 
generated by speaker A  using his own model. The variable T is our acceptance 
or rejection threshold. 

The next section details the pattern matching stage with an emphasis on 
speaker recognition based on kernel classifiers. 

3. ARCHITECTURES FOR SPEAKER RECOGNITION 

The speaker recognition problem is closely related to the conventional 
supervised classification. Hence, we start by providing few related definitions. 
In the classification scenario one is given a training set {(x1 , y1),…, .(xN , yN)} 
containing N examples, which are considered to be independently and 
identically distributed (iid) samples from an unknown but fixed distribution P(x, 
y). Each example (x, y) consists of a vector x ∈  X of dimension L (called 
instance) and a label y ∈  {1,…,Y}. A classifier is simply a mapping 



F:X→{1,…,Y }. Of special interest are binary classifiers, for which Y=2, and for 
mathematical convenience, sometimes the labels are y ∈  {−1, 1} (e.g., SVM) or 
y ∈  {0, 1} (e.g., RVM). 

 Some classifiers are able to provide confidence-valued scores )(xfi , for 
each class i  = 1,…,Y. A special case occurs when the scores correspond to a 
distribution over the labels, i.e., )(xfi  ≥ 0 and ∑

i
i xf )(  = 1. Commonly, 

these classifiers use the max-wins rule F(x) = argi max )(xfi . When the 

classifier is binary, only a single score )(xfi  ∈  R is needed. For example, if 

y ∈  {−1, 1}, the final decision F(x) = sign( )(xfi ) is simply the sign of the 
score. 

In speaker verification systems, the input consists of a matrix X ∈  RT×Q 
that corresponds to a segment of speech. The number T of rows is the number of 
frames (or blocks) of speech, and Q (columns) represents the number of 
parameters representing each frame. If T is fixed (say, corresponding to 5 
milliseconds), X could be turned into a vector of dimension T × Q, and one 
would end up with a conventional classification problem. However, in 
unrestricted text speaker verification, any comparison between elements of two 
such vectors could fail if they represent different sounds. Hence, verification 
systems often adopt alternative architectures, which are similar, but do not 
exactly match the stated definition of a classifier. We now present the two most 
popular architectures: 

3.1. Frame-based 

Under this architecture, a frame-based system is trained using a generative or a 
discriminative learning. The input to confidence-valued classifiers is a frame Xt 
with dimension L = Q, and the total score of an utterance is computed by 
summing the score of each frame (possibly, in the log-domain). The 
Expectation-Maximization algorithm is often used for learning the generative 
classifiers for this architecture. This approach is adopted in the conventional 
GMM-based system for text independent speaker recognition, and the HMM-
based system for text dependent speaker recognition. Alternatively, one can use 
discriminative learning, such as the SVM for training the classifiers. The main 
disadvantage of applying discriminative learning to this architecture is that the 
number of training examples can be too large for some discriminative 
techniques. For example, SVM training time scales with the square of the 
number of training examples, while GMM training scales linearly. 

3.2. Hybrid 

The hybrid architecture combines advantages of the generative and 
discriminative learning techniques through the use of the Fisher kernel [9]. It 



has been applied to the speaker verification tasks in [10] and [11]. In summary, 
first, the generative learning is used to obtain a generative model such as the 
GMM. Then, the discriminative learning is applied on new “features” obtained 
using the generative model. Under the hybrid architecture, the number of 
features for each input utterance is not given by T × Q as for the frame-based 
architecture, but it is equal to the number of parameters in the generative 
model (for e.g., the means and variances of a GMM). 

4. EXPERIMENTAL RESULTS 

In this section, first, we briefly describe the IME corpus, and then, present 
simulations results for a GMM-based speaker verification system, and 
preliminary results for a SVM-based speaker verification system. For the 
experiments, we mostly followed the approach adopted in [12]. 

4.1. IME corpus and experiments design 

The IME corpus has been made available by the Signal Processing Group at 
IME (http://www.ime.eb.br/~labvoz/). The utterances in this database were 
collected from cellular and wired phone calls made by 75 speakers, through the 
D41ESC Dialogic board, which supports 8-bit PCM µ and A-laws. The speech 
files are stored in the Microsoft RIFF format as 8-bit PCM linear. Note that one 
would expect 12 or more bits per sample when expanding from the logarithmic 
to a linear scale. 

We made two modifications to the corpus. The original 11-digit file names 
(e.g., 12151110051.wav) were converted to names such as 
id001.cel.train.man.RJ.cn.42.wav, where a dot separates the information fields. 
These fields represent a unique speaker ID, cellular or wired phone, train or test, 
gender, speaker geographical origin, recording conditions, speaker’s age and 
file extension (wav). Secondly, we eliminated silence from the utterances using 
a voice activity detector that is based on the signal energy. 

4.2.  GMM results 

Model selection for GMM is often very simple. In this work, after few 
experiments using a validation set, we adopted 20 Gaussians per model. For the 
verification experiments, we used a universal background models (UBM) with 
32 Gaussians. All the GMMs, representing the speakers in the database, were 
trained with 60 seconds of speech. For testing, we used segments of the 
following durations: 20, 10, and 5 seconds. 

We compared the best results presented in [12] with the ones obtained with 
seven different front ends: a) the conventional 15 MFCCs, plus energy and two 
first derivatives (called here MFCCEDA48); b) MFCCEDAZ48, where Z 
indicates cepstral mean normalization (CMN); c) only 12 static coefficients with 
CMN (MFCCZ12); d) 12 PLPs, plus energy and two derivatives (PLPEDA39); 
e) PLPEDAZ39 and f) PLPZ7 with 7 static PLPs. Figure 2 and Figure 3 show 



the results obtained for wired and cellular phone speech, respectively. The 
results labeled as “ime” were obtained directly from [12], and correspond to a 
front end with 22 parameters (15 MFCCs plus 7 Hurst parameters), and the 
multi-dimensional fractional Brownian motion classifier (see [12] for details). 

The standard front end plpeda39 outperformed the others as shown in 
Figure 2. It can be observed from Figure 3 that the plpedaz39 front end achieves 
the best result in all but one simulation: cellular phone speech with test 
utterances of 20 seconds. In this case, the error rate presented in [12] is 1.8%, 
which is very close to the 1.3% for wired phone speech, while, on average, the 
error rates in [12] for cellular are 5.8% higher than for wired phone speech. The 
results also show that though CMN is effective for cellular, it decreases the 
performance for wired phone speech. 

In the next subsection, we present a comparison of the best GMM results 
with the preliminary results obtained with SVMs. The results presented in this 
section can be replicated by following the information on experimental 
framework provided in [13]. 

4.3. SVM results 

Usually, model selection for kernel classifiers demands strategies more 
sophisticated than for a generative classifier. In our first experiments with SVM, 
all the model parameters were selected using ten-fold cross-validation (CV) on 
the training set, as commonly done in several domains. However, standard CV 

20 10 5
0

1

2

3

4

5

6

7
Identification for wired phone speech

M
is

cl
as

si
fic

at
io

n 
er

ro
r (

%
)

Time (seconds) of test utterance

mfcceda48
mfccedaz48
mfccz12
plpeda39
plpedaz39
plpz7
ime

 
 

Figure 2- Identification error for wired phone speech for three durations of 
the test utterances: 5, 10, and 20 milliseconds. 



does not take in account that neighbor speech frames are correlated, and the 
random split of speech parameter vectors into folds for training and test sets can 
eventually make the test set too close to the training set. Better results were 
obtained using a validation set that does not overlap the training set. 

The ISIP SVM trainer supports linear, polynomial, and radial-basis 
function (RBF) kernels. Among non-linear kernels, the Gaussian RBF kernel, 
when well-tuned, is competitive in terms of accuracy with any other kernel [14]. 
In this work, we exclusively adopted the Gaussian kernel, given by 

 
2

),( xxexxK ′−−=′ γ .  (5) 
 

The parameters γ and, C were selected using an iterative tuning process on 
a development test set.. First we selected C as 1, and then, chose γ by starting 
with γ = 1, then increasing (or decreasing) γ by a factor of 2 (or 0.5) until we did 
not get any further improvements. We iterated this process for three consecutive 
times. After choosing γ with C=1, we optimize C using the same iterative tuning 
procedure. Although this type of parameter tuning process is computationally 
intensive, it has an advantage of minimal manual intervention. 

We also normalized the parameter vectors to have elements in the [0, 1] 
range. The normalization parameters were computed using the training set, and 
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Figure 3- Identification error for cellular phone speech for three durations of the test 
utterances: 5, 10 and 20 milliseconds. 



then, used to normalize both the training and the test sets. 
In our experiments, we adopted a frame-based approach. Up to date, the 

hybrid is clearly the most successful architecture (see, e.g., [11]). However, 
given that the GMM-based systems follow a frame-based architecture, we chose 
to use it in our preliminary experiments with kernel classifiers in order to better 
understand the tradeoffs between the generative and discriminative approach. 

More specifically, we consider the speaker verification problem an 
excellent domain to stress the differences between generative and discriminative 
learning. This is an important research topic in machine learning nowadays, and 
recent theoretical results have brought some light to this matter (see, e.g., [15]). 
For example, when training data is scarce, generative classifiers can outperform 
discriminative ones. Hence, our investigation aims to confirm these claims and 
elaborate new ones using speaker verification experiments. As shown in Table 
1, our preliminary results show that the current performance achieved by SVM 
using the frame-based architecture is outperformed by GMM. 

5. CONCLUSIONS 

In this paper, we described the ISIP toolkit, an open source framework 
for developing speaker, and speech recognition systems. Among other 
features, the ISIP toolkit supports GMM and SVM-based systems. We 
also presented new results for the IME corpus using Gaussian mixture 
models, which outperformed the previously published results [12] in 
most cases. 

The future work concentrates on using the speaker verification problem to 
investigate the tradeoffs between generative and discriminative learning. We are 
currently estimating the variation in the performance of GMM and SVM-based 
systems with respect to the amount of training data. These experiments will be 
useful to validate the conclusions in [15]. We are also planning to expand the 
experimentation using the SVM system on hybrid architectures with an aim to 
outperform the GMM based system. 

6. REFERENCES 

 
 20 sec. 10 sec. 5 sec. 
Previous [12] 0.67 0.85 1.13 
MFCCEDA48-GMM 0.05 0.89 1.78 
PLPEDA39-GMM 1.78 1.34 2.67 
MFCCEDA48-SVM 1.10 1.40 2.30 

 
Table 1. Comparison of  Equal error rate (EER) for speaker verification systems 
using wired phone speech (%). 
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