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Abstract. Notes:
Picone: We had planned by now to do some SVM/RVM speaker

recognition experiments. This would be an excellent topic for col-
laboration. We could write about the toolkit and core technology,
and you could write about your experiments.

Aldebaro: the paper must be at most 10-pages long.

INTRODUCTION

Speaker recognition: verification / identification. GMM as baseline. Univer-
sal Background Model. Recent work using BaseIME (the corpus we have).

Identification can be seen as several verifications.
New baseline for BaseIME. Open-source. Reproducible results.

CLASSIFIERS IN SPEAKER VERIFICATION

The speaker recognition problem is closely related to conventional super-
vised classification. Hence, we start by discussing few related definitions. In
the classification scenario one is given a training set {(x1, y1), . . . , (xN , yN )}
containing N examples, which are considered to be independently and iden-
tically distributed (iid) samples from an unknown but fixed distribution
P (x, y). Each example (x, y) consists of a vector x ∈ X of dimension L
(called instance) and a label y ∈ {1, . . . ,Y }. A classifier is a mapping
F : X → {1, . . . ,Y }. Of special interest are binary classifiers, for which Y = 2,
and for mathematical convenience, sometimes the labels are y ∈ {−1, 1} (e.g.,
SVM) or y ∈ {0, 1} (e.g., RVM).



Some classifiers are able to provide confidence-valued scores fi(x), for
each class i = 1 . . . Y . A special case is when the scores correspond to a
distribution over the labels, i.e., fi(x) ≥ 0 and

∑Y
i=1 fi(x) = 1. Commonly,

these classifiers use the max-wins rule F (x) = argi max fi(x). When the
classifier is binary, only a single score f(x) ∈ R is needed. For example, if
y ∈ {−1, 1}, the final decision F (x) = sign(f(x)) is the sign of the score.

In speech verification systems, the input consists of a matrix X ∈ RT×Q

that corresponds to a segment of speech. The number T of rows is the
number of frames (or blocks) of speech and Q (columns) is the number of
parameters representing each frame. If T is fixed (e.g., corresponding to 5
milliseconds), X could be turned into a vector of dimension T ×Q, and one
would have a conventional classification problem. However, in unrestricted-
text speech verification, any comparison between elements of two such vectors
could fail if they represent different sounds. Hence, verification systems often
adopt alterative architectures, which are similar, but do not fit exactly the
stated definition of a classifier. We organize the most popular architectures
as follows.

Architectures for speaker recog. based on classifiers

a) Generative. Classical architecture using Fisher kernel, as proposed in [3]
and applied to speech verification, e.g., in Nathan Smith (http://mi.eng.cam.ac.uk/ nds1002/),
Vincent Wan (http://www.dcs.shef.ac.uk/ vinny/svmsvm.html), etc.

b) Segmental. An alternative to this approach is to use segmental features
as done by ISIP for speech recognition. Need to elaborate a bit on that.

c) Accumulative. Another alternative is to train a frame-based system,
where the input to confidence-valued classifiers is a frame xt with dimension
L = Q, and the total score of class i is 1

T

∑T
t=1 fi(xt). This is the approach

adopted in the conventional GMM-based system. In this case, the number
N of training examples can be too large.

Gaussian Mixture Model

The GMM is the most popular technique adopted in speaker verification
systems and corresponds to our baseline. Differently from the other discrim-
inative classifiers we discuss, GMM is a generative classifier (see, e.g., [5]).
GMM is a special case of a Bayes classifier that adopts a mixture of Gy

multivariate Gaussians as its likelihood model for modeling class y, namely

P̂ (x|y) =
Gy∑
g=1

wygN (x|µyg,Σyg). (1)

with Σyg being a diagonal covariance matrix (that can be different for each
Gaussian).



Kernel Learning

Very brief description of SVM and RVM. Review of works about SVM applied
to speaker verification.

Here we briefly describe the kernel classifiers used in this work. We note
that a Bayes classifier is called by some authors a “kernel” classifier (see, e.g.,
page 188 in [2]). However, by kernel classifier we mean the ones obtained
through kernel learning, as defined, e.g., in [9].

Two of the kernel classifiers (RVM and IVM) that we consider are based on
Bayesian learning, while the others (SVM and PSVM) are non-probabilistic.

Non-probabilistic kernel classifiers

SVM and other kernel methods can be related to regularized function esti-
mation in a reproducing kernel Hilbert space (RKHS) [10]. One wants to
find the function F that minimizes

1
N

N∑
n=1

L(F (xn), yn) + λ||F ||2HK , (2)

where HK is the RKHS generated by the kernel K, F = h+ b, h ∈ HK, b ∈ R
and L(F (xn), yn) is a loss function.

Before trying to use a classifier with a non-linear kernel, it is wise to first
check if a linear kernel

K(x,x′) = x · x′

achieves the desired accuracy on the problem. A linear kernel classifier can
be converted to a perceptron, which avoids storing the support vectors and
saves computations during the test stage. Among non-linear kernels, the
Gaussian radial-basis function kernel (when well-tuned) is competitive in
terms of accuracy with any other kernel (see, e.g., [8]). The Gaussian kernel
is given by

K(x,x′) = e−γ||x−x′||2 .

The solution to the optimization problem described in Equation 2, as
given by the representer theorem [4], is

F (x) =
N∑

n=1

ωnK(x,xn) + b. (3)

This expression indicates that SVM and related classifiers are example-based [9]:
F is given in terms of the training examples xn. In other words, assuming a
Gaussian kernel, the mean of a Gaussian is restricted to be a training example
xn.

Some examples xn may not be used in the final solution (e.g., the learning
procedure may have assigned ωn = 0). We call support vectors the examples
that are actually used in the final solution, even for classifiers other than



SVM (while some authors prefer to call relevance vectors the support vectors
of RVM classifiers, and so on). For saving memory and computations in the
test stage, it is convenient to learn a sparse F , with few support vectors.
We can obtain sparse solutions only if the loss function L is zero over an
interval (see, e.g., problem 4.6 in [9]). SVM achieves a sparse solution (at
some degree) by choosing the loss

L(F (xn), yn) = (1− F (xn)yn)+,

where (z)+ = max{0, z}. The PSVM [1] classifier is obtained by choosing

L(F (xn), yn) = (F (xn)− yn)2

and, consequently, ends up using all the training set as support vectors.
Motivated by the discussion in [8], which takes into account some previous
work related to PSVM, hereafter we refer to PSVM as regularized least-square
classifier (RLSC).

Learning a RLSC classifier requires solving

(K + λI)ω = y,

where K is the kernel matrix, y = {yn} is the vector with labels and λ plays a
role similar to the C constant in SVM. Training the classifier requires “only”
a matrix inversion, but the matrix has size N ×N .

Assuming the SVM is implementing the optimal discriminant function
between two classes that have a given Bayes error, the number of examples
that are misclassified will scale linearly with the size of the training set, and
so will the number of support vectors. Therefore, techniques to obtain sparser
solutions are a current topic of research. Two of these techniques, namely
RVM [11] and IVM [6], are discussed in the next subsection.

Probabilistic kernel classifiers

Both RVM and IVM are sparse Bayesian learning methods that can be related
to the regularized risk functional of Eq. (2) (see, e.g., [9]). They adopt a
model for the posterior given by g(ynF (xn)), where F is given by Eq (3) and
g is a sigmoid link function that converts scores into probabilities. Because
the link function is used along the training stage, these methods potentially
provide probabilities that are more “calibrated” [12] than the ones obtained,
for example, by fitting a sigmoid after training a SVM [7].

We note that having a basic understanding of logistic regression (see,
e.g., [2]) helps the study of probabilistic kernel methods such as IVM and
RVM. For example, while linear regression obtains the “best fitting” equa-
tion by using the least-squares criterion, logistic regression uses the “logit”
transformation to restrict the output of the classifier to the range [0, 1], and
then uses a maximum likelihood method to train the classifier. This is the
same approach used in some probabilistic kernel methods. They also use a



Table 1: Identificacao

20seg 10seg 5seg
wired phone 98.73 98.74 98.55
cell phone 93.67 92.13 89.71

link function (e.g., the logit transformation for RVM and the probit trans-
formation for IVM) to convert scores (real numbers) into an indication of
probability, and a maximum likelihood method to train the classifier.

The Bayesian framework described in [11] allows, e.g., for solving multi-
class problems and estimating the variances of each Gaussian. However, the
computational cost is very high. Even when solving a binary problem with
the standard RVM, the method is slow because the first iterations require
inverting an N ×N matrix.

IVM is an alternative to RVM with a faster training procedure. IVM
adopts a different strategy and, instead of starting with all N and then elimi-
nating examples as RVM, it uses a heuristic to select potential support vectors
in a greedy way.

We note that many other probabilistic kernel methods have been recently
proposed. For example, in [13], the import vector machine was derived by
choosing the following loss function for the margin

L(F (xn), yn) = log(1 + e−F (xn)yn).

Only more research will indicate which probabilistic kernel methods prevail.
For the moment, RVM and IVM seem to be a reasonable sample of these
methods.

ISIP SYSTEM

(if you want to collapse section I and II into one longer introduction and split
this section into two: a) ISIP and b) speaker recognition using ISIP, it’s ok
with me)

EXPERIMENTAL RESULTS

GMM is the baseline. SVM using conventional kernels (Gaussian, polyno-
mial, linear) SVM using Fisher kernels, based on generative (GMM) models

Improving the baseline for the BaseIME corpus

Here we describe how we improved upon IME. Check what they published in
the SBT paper because we don’t want to mention the results in the classified
thesis.
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Figure 1: Verification for cellular phone speech

CONCLUSIONS
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Figure 2: Identification for cellular phone speech

[11] M. Tipping, “Sparse Bayesian Learning and the Relevance Vector Machine,”
Journal of Machine Learning Research, vol. 1, pp. 211–244, 2001.

[12] B. Zadrozny and C. Elkan, “Transforming Classifier Scores into Accurate Mul-
ticlass Probability Estimates,” in KDD, 2002.

[13] J. Zhu and T. Hastie, “Kernel Logistic Regression and the Import Vector
Machine,” in NIPS, 2001.



20 10 5
0

1

2

3

4

5

6
Verification for wired phone speech

Time (seconds) of test utterance

E
qu

al
 e

rr
or

 r
at

e 
/ E

E
R

 (
%

)
ph−gmm
ph−fbm
mfc−gmm
mfc−fbm
mfc+ph−gmm
mfc+ph−fbm
our−mfc−gmm

Figure 3: Verification for wired phone speech
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Figure 4: Identification for wired phone speech


