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Abstract.  This work presents an open source framework for developing speaker recognition systems. Among other features, it supports kernel classifiers, such as the support and relevance vector machines. The paper also describes new results for the IME corpus using Gaussian mixture models and discusses strategies for training discriminative classifiers.
1) INTRODUCTION

Speech research technologies such as a speech recognition system and a speaker verification/identification system require an integration of knowledge across several domains such as signal processing, and machine learning. With the constant evolution and ever increasing complexity of the speech research technology, the development of a state-of-the-art speech recognition system or a speaker verification/identification system becomes a time-consuming and infrastructure-intensive task. This is problematic especially for researchers in third-world countries, such as Brazil, where few groups are, for example, affiliated to the Linguistic Data Consortium and similar organizations.
Hence, the adoption of public domain software and corpora is very important for advancing the state-of-art and allowing a proper comparison among well-established and new techniques. In terms of Brazil, for example, there are few corpora freely available, and most of them are too small for serious research. However, the Military Institute of Engineering (IME), recently released the BaseIME, a Brazilian Portuguese corpus for speaker recognition. This corpus is potentially the main resource for Brazilian speech researchers in the area of speaker recognition. Together with ISIP, which is centered in public domain technology, the BaseIME corpus compose a framework that will motivate groups to produce results that are reproducible and can be easily compared to others previously published.
Along this line, this paper presents the following contributions. We describe new results that improve upon previously published ones for most cases. More importantly, the results obtained by this baseline can be reproduced in other sites, because we make all the necessary information (file lists, scripts, etc.) available on our web site. We also present a brief review of kernel classifiers and architectures for applying them to speaker recognition. There are several difficulties to circumvent when adopting kernel classifiers, and we discuss some of the most important issues, together with the presentation of preliminary results comparing the Gaussian mixture model (GMM) and support vector machine (SVM).

The paper is organized as follows…
2) ISIP SPEAKER VERIFICATION SYSTEM

Since 1994, ISIP has been developing free public domain software for the speech research community. Our speech recognition effort began with the development of a prototype system in 1996 [1]. The motivation for developing a prototype system was to demonstrate our speech recognition technology and to understand efficiency issues before we committed to a larger-scale implementation. Based on the prototype system, many applications have been successfully developed including Switchboard (SWB) [2], Call Home [2], Resource Management (RM) [3], and Wall Street Journal (WSJ) [4].

Since 1998, we have focused on the development of a modular, flexible, and extensible recognition research environment, which we refer to as the production system [5,6]. The toolkit contains many common features found in modern speech to text (STT) systems: a GUI-based front end tool that converts the signal to a sequence of feature vectors, an HMM-based acoustic model trainer, and a time-synchronous hierarchical Viterbi decoder. 

Recently, we have added a SVM trainer, a SVM classifier, and a set of supporting utilities to the production system that allows a user to build a hybrid HMM/SVM speech recognition system [7]. We have also extended the production system to speaker verification domain by implementing two speaker verification systems—one system is based on the generative GMM technology, and the second system is based on discriminative Support Vector Machines. We are also planning to add a hybrid HMM/RVM based speech recognition system [8] to the production system. All these new features will be embedded in the next release of the production system (r00_n12), which is scheduled at the beginning of May 2004.

All the components introduced above are developed based on an extensive set of foundation classes (IFCs). IFCs are a set of C++ classes organized as libraries in a hierarchical structure. These classes are targeted for the needs of rapid prototyping and lightweight programming without sacrificing the efficiency. Some key features include:

· unicode support for multilingual applications;

· math classes that provide basic linear algebra and
efficient matrix manipulations;

· memory management and tracking;

· system and i/o libraries that abstract users from details of the operating systems.

The software environment provides support for users to develop new approaches without rewriting common functions. The software interfaces are carefully designed to be generic and extensible. The complete software toolkit release, and the associated documentation is available on-line at http:// www.isip.msstate.edu/projects/speech/index.html.

GMM based system

The general approach to speaker verification, as shown in Figure 1, consists of 
the following stages: digital speech data acquisition, feature extraction, speaker adaptation, pattern matching, and decision mechanism. Additionally, enrollment is required to generate the models for each speaker.
The sequences of feature vectors, extracted from the speech signal, are compared to a model representing the claimed speaker via pattern matching. The speaker models are obtained from a previous enrollment process. An utterance-based score is used to accept or reject a speaker through hypothesis testing.

Figure 1: Architecture of Typical Speaker Verification System
Feature Extraction
In the feature extraction stage, the perceptually relevant, and meaningful information is extracted from the input speech signal. An industry standard Mel-frequency cepstral coefficients (MFCC) front end extracts 12 Mel-frequency cepstral coefficients (MFCC) plus the log energy at a frame rate of 100 frames per second. In order to model the spectral variation of the speech signal, the first and second order derivatives of the 13 coefficients are appended to yield a total of 39 coefficients per frame.

Pattern Matching

The likelihood of an observation is obtained using a multi-dimensional Gaussian mixture model (GMM) of the speaker’s voice. The  GMM  is  the  most  popular  technique  adopted  in  speaker  veriﬁcation systems.  Diﬀerently from the other discrim- inative  classiﬁers  we  discuss later on,  GMM  is  a  generative  classiﬁer  (see,  e.g.,  [5]). GMM  is  a  special  case  of  a  Bayes  classiﬁer  that  adopts  a  mixture  of  Gy multivariate Gaussians as its likelihood model for modeling class y, namely
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with  Σyg  being a diagonal covariance matrix (that can be diﬀerent for  each Gaussian).

Decision Mechanism
A binary decision to accept or reject a claimed identity is based on the likelihood score. If the null-hypothesis (
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 gives us the following decision criteria,
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represents the conditional density of the likelihood score generated by imposters using speaker
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 represents the conditional density of the likelihood score generated by speaker 
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 using his own model. The variable 
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is our acceptance or rejection threshold.

SVM based system

While the feature extraction process is in a SVM based speaker verification system is similar to the GMM based system, the pattern matching and decision theory steps are based on a discriminative framework rather than a stochastic framework. This discriminative framework is represented by Support Vector Machines.

Pattern Matching

The score of an observation is represented by the distance generated during the classification of this observation on the speaker’s SVM model. ISIP SVM trainer supports linear, polynomial, and RBF kernels. The total score of an utterance is represented as an averaged sum of the distances corresponding to all frames in the utterance. 

Decision Mechanism
A binary decision to accept or reject a claimed identity is based on the averaged SVM distances. If the null-hypothesis (
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is selected if the total score is greater than a threshold T, and 
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is selected if the total score is less than or equal to the threshold T.

The next section discusses speaker recognition based on kernel classifiers.

3) KERNEL-BASED SPEAKER RECOGNITION

The  speaker  recognition  problem  is  closely  related  to  conventional  super- vised classification.  Hence, we start this section by discussing few related definitions.  In the classification scenario one is given a training set  {(x1 , y1 ), . . . , (xN , yN )} containing N  examples, which are considered to be independently and identically  distributed  (iid)  samples  from  an  unknown  but  fixed  distribution P (x, y).   Each  example  (x, y)  consists  of  a  vector  x  
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  X  of  dimension  L (called  instance)  and  a  label  y 
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   {1, . . . ,Y }.    A  classifier   is  a  mapping F  : X  → {1, . . . ,Y }.  Of special interest are binary classifiers, for which Y  = 2, and for mathematical convenience, sometimes the labels are y 
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   {−1, 1} (e.g., SVM) or y   
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 {0, 1} (e.g., RVM).

Some  classiﬁers  are  able  to  provide  conﬁdence-valued  scores fi (x),  for each  class  i  = 1 ...Y .   A  special  case  is  when  the  scores  correspond  to  a distribution over the labels,  i.e., fi (x) ≥ 0 and  fi (x) = 1.  Commonly, these classiﬁers use the max-wins  rule F (x)  =  argi max fi (x).   When  the classiﬁer  is  binary,  only  a  single  score  f (x)   
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    R  is  needed.   For  example,  if               y   
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  {−1, 1}, the ﬁnal decision F (x) = sign(f (x)) is the sign of the score.

   In speech veriﬁcation systems, the input consists of a matrix X 
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 RT×Q that  corresponds  to  a  segment  of  speech.    The  number  T   of  rows  is  the number  of  frames  (or  blocks)  of  speech  and  Q  (columns)  is  the  number  of parameters  representing  each  frame.   If  T  is  ﬁxed  (e.g.,  corresponding  to  5 milliseconds), X could be turned into a vector of dimension T  × Q, and one would  have a  conventional  classiﬁcation  problem.  However,  in  unrestricted text speech veriﬁcation, any comparison between elements of two such vectors could fail if they represent diﬀerent sounds.  Hence, veriﬁcation systems often adopt  alterative  architectures,  which  are  similar,  but  do  not  ﬁt  exactly  the stated deﬁnition  of  a  classiﬁer.  We organize  the  most  popular architectures as follows.

3.1- Architectures based on kernel classiﬁers

a) Generative.   Classical architecture using Fisher kernel, as proposed in [3]

and applied to speech veriﬁcation, e.g., in Nathan Smith (http://mi.eng.cam.ac.uk/ nds1002/), Vincent Wan (http://www.dcs.shef.ac.uk/ vinny/svmsvm.html), etc.

b) Segmental.    An alternative to this approach is to use segmental features as done by ISIP for speech recognition.  Need to elaborate a bit on that.

c)  Accumulative. Another alternative is to train a frame-based system, where the input to confidence-valued classifiers is a frame Xt with dimension L = Q, and the total score of class i is  . This is the approach adopted in the conventional GMM-based system. In this case, the number N of training examples can be too large.
We now brieﬂy discuss kernel classiﬁers, noting that a Bayes classiﬁer is called by some authors a “kernel” classiﬁer (see, e.g., page  188  in  [2]).   However,  by  kernel  classiﬁer  we  mean  the  ones  obtained through kernel learning, as deﬁned, e.g., in [9]. Two of the kernel classiﬁers (RVM and IVM) that we consider are based on

Bayesian learning, while the others (SVM and PSVM) are non-probabilistic.

3.2- Non-probabilistic  kernel  classiﬁers

SVM  and  other  kernel  methods  can  be  related  to  regularized  function  esti- mation  in  a  reproducing  kernel  Hilbert  space  (RKHS)  [10].   One  wants  to ﬁnd the function F  that minimizes
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 is the RKHS generated by the kernel K, F  = h + b, h  
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 R 
and L(F (xn ),yn ) is a loss function. 


Before trying to use a classiﬁer with a non-linear kernel, it is wise to ﬁrst check if a linear kernel 
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achieves  the  desired  accuracy  on  the  problem.  A  linear  kernel  classiﬁer  can be  converted  to  a  perceptron,  which  avoids  storing  the  support  vectors  and saves  computations  during  the  test  stage.    Among  non-linear  kernels,  the Gaussian  radial-basis  function  kernel  (when  well-tuned)  is  competitive  in terms of accuracy with any other kernel (see, e.g., [8]).  The Gaussian kernel is given by
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The  solution  to  the  optimization  problem  described  in  Equation  2,  as given by the representer  theorem 
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This expression indicates that SVM and related classiﬁers are example-based [9]:  F  is given in terms of the training examples xn .  In other words, assuming a Gaussian kernel, the mean of a Gaussian is restricted to be a training example 
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Some examples xn  may not be used in the ﬁnal solution (e.g., the learning procedure may have assigned ωn  = 0).  We call support vectors  the examples that  are  actually  used  in  the  ﬁnal  solution,  even  for  classiﬁers  other  than

SVM (while some authors prefer to call relevance vectors the support vectors of RVM classiﬁers, and so on).  For saving memory and computations in the test  stage,  it  is  convenient  to  learn  a  sparse  F ,  with  few  support  vectors. We  can  obtain  sparse  solutions  only  if  the  loss  function  L  is  zero  over  an interval  (see,  e.g.,  problem  4.6  in  [9]).   SVM  achieves  a  sparse  solution  (at some degree) by choosing the loss
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where (z)+  = max{0,z}.  The PSVM [1] classiﬁer is obtained by choosing
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and,  consequently,  ends  up  using  all  the  training  set  as  support  vectors. Motivated  by  the  discussion  in  [8],  which  takes  into  account  some  previous work related to PSVM, hereafter we refer to PSVM as regularized least-square classiﬁer  (RLSC).


Learning a RLSC classiﬁer requires solving

(K + λI)ω = y,

where K is the kernel matrix, y = {yn } is the vector with labels and λ plays a role similar to the C  constant in SVM. Training the classiﬁer requires “only” a matrix inversion, but the matrix has size N × N .


Assuming  the  SVM  is  implementing  the  optimal  discriminant  function between  two  classes  that  have  a  given  Bayes  error,  the  number  of  examples that are misclassiﬁed will scale linearly with the size of the training set, and so will the number of support vectors.  Therefore, techniques to obtain sparser solutions  are  a  current  topic  of  research.   Two  of  these  techniques,  namely RVM [11] and IVM [6], are discussed in the next subsection.

3.3- Probabilistic  kernel  classiﬁers

Both RVM and IVM are sparse Bayesian learning methods that can be related to  the  regularized  risk  functional  of  Eq.  (2)  (see,  e.g.,  [9]).   They  adopt  a model for the posterior given by g(yn F (xn )), where F  is given by Eq (3) and g  is  a  sigmoid  link  function  that  converts  scores  into  probabilities.  Because the link function is used along the training stage, these methods potentially provide probabilities that are more “calibrated” [12] than the ones obtained, for example, by ﬁtting a sigmoid after training a SVM [7].


We  note  that  having  a  basic  understanding  of  logistic  regression  (see, e.g.,  [2])  helps  the  study  of  probabilistic  kernel  methods  such  as  IVM  and RVM.  For  example,  while  linear  regression  obtains  the  “best  ﬁtting”  equa- tion  by  using  the  least-squares  criterion,  logistic  regression  uses  the  “logit” transformation to restrict the output of the classiﬁer to the range [0, 1], and then  uses  a  maximum  likelihood  method  to  train  the  classiﬁer.  This  is  the same  approach  used  in  some  probabilistic  kernel  methods.  They  also  use  a link  function  (e.g.,  the  logit  transformation  for  RVM  and  the  probit  trans- formation  for  IVM)  to  convert  scores  (real  numbers)  into  an  indication  of probability, and a maximum likelihood method to train the classiﬁer.


The Bayesian framework described in [11] allows,  e.g.,  for solving multi- class problems and estimating the variances of each Gaussian.  However, the computational  cost  is  very  high.  Even  when  solving  a  binary  problem  with the  standard  RVM,  the  method  is  slow  because  the  ﬁrst  iterations  require inverting an N × N  matrix.


IVM  is  an  alternative  to  RVM  with  a  faster  training  procedure.   IVM adopts a diﬀerent strategy and, instead of starting with all N  and then elimi- nating examples as RVM, it uses a heuristic to select potential support vectors in a greedy way.


We note that many other probabilistic kernel methods have been recently proposed.   For  example,  in  [13],  the  import  vector  machine  was  derived  by choosing the following loss function for the margin
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Only more research will indicate which probabilistic kernel methods prevail. For  the  moment,  RVM  and  IVM  seem  to  be  a  reasonable  sample  of  these methods.

4) EXPERIMENTAL RESULTS
4.1- IME corpus experiments design
The BaseIME corpus has been made available by the signal processing group at IME (http://www.ime.eb.br/~labvoz/). The utterances correspond to cellular and wired phone calls, collected through the D41ESC Dialogic board that supports 8-bit PCM μ and A-laws. We note the files are stored in the Microsoft RIFF format as 8-bit PCM linear, while one would expect 12 or more bits per sample when expanding them from the logarithmic to a linear scale.
We modified the corpus as follows. The original 11-digit file names (e.g., 12151110051.wav) were converted to names such as id001.cel.train.man.RJ.cn.42.wav, where a dot separates the information fields. The fields are the following: an unique ID, cellular or wired phone, train or test, genre, speaker geographical origin, recording conditions, speaker’s age and file extension (wav). A voice activity detection (VAD) algorithm based on the signal energy was used for removing the silence regions.
For the experiments, we mostly followed the approach adopted in [IME, SBT]. 
To do the experiment, we need to define the list of IDs that participate in each test, and the list of available files. The files actually used is a subset of the original list chosen according to criteria to be described below. All of them match some ID (speaker) in the ID list.

For identification, there is only one ID list: the list of IDs used in the training, for which we have a GMM (or SVM).

For verification, we may want to allow speakers that are not in the training list to be included in the test (always as "negative" examples, of course). We call this situation "with-unseen" speakers. The other situation, where all speakers are in both training and test list is called "no-unseen".

Besides the ID list, we can choose to have the same amount of test files, per speaker, the same number of positive and negative examples, etc. The most flexible is the "all-tests", where we use all test files that match speakers in the ID list. We call "N-tests" the experiment in which the test list has, for each speaker, N positive examples and N negative examples.

4.2- GMM results

Model selection for GMM is often very simple. In this work we adopted 20 Gaussians per model. For the verification experiments, the “universal background model” (UBM) used 32 Gaussians. We compared the best results obtained by IME [SBT03] with the results obtained with seven different front ends: the conventional 15 MFCCs, plus energy and two first derivatives (called here MFCCEDA48), previous one with “cepstral mean normalization” (CMN) or MFCCEDAZ48, only 12 static coefficients with CMN (MFCCZ12), 12 PLPs, plus energy and two derivatives (PLPEDA39), PLPEDAZ39 and PLPZ7. Figures 1 and 2 show the results obtained for wired and cellular phone speech, respectively. The verification results are similar to these and will not be shown here due to the lack of space.
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Fig.1- Identification error for wired phone speech for three durations of the test utterance: 5, 10 and 20 milliseconds.
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Fig.2- Identification error for cellular phone speech for three durations of the test utterance: 5, 10 and 20 milliseconds.

4.3- SVM results

Usually, model selection for kernel classifiers demands strategies more sophisticated than for GMM. In our first experiments with SVM, all the model parameters were selected using ten-fold cross-validation (CV) on the training set. However, the random split of vectors into folds for training and test sets would eventually make the test set too close to the training set (neighbor vectors would be in the training and test sets). Better results were obtained using a validation set with no overlap with the training set.

We used the Gaussian kernel with all experiments using BaseIME. The parameters γ and, C were selected as follows. First we chose γ by starting with γ =1, then increasing (or decreasing) γ by multiplying by 2 (or 0.5) until we do not get improvements for three consecutive times (we initialize the search with different γ if it does not converge). After choosing γ with C=1, we optimize C using the same search procedure. This model selection procedure is computationally intensive but avoids manual intervention and using the test set to select the parameters.
We also normalized the datasets. I this case, we strictly used the training set to calculate the normalization parameters, never looking at the test set. These parameters are then used in both training and test stages.

The architecture adopted for the SVM experiments was the accumulative, where the score of each frame is accumulated to get the final model score. However, the results obtained by SVM were inferior to the GMM ones. Recent theoretical results (see, e.g., [Classification with Hybrid Generative/Discriminative Models, Rajat Raina, Yirong Shen, Andrew Y. Ng and Andrew McCallum, In NIPS 16, 2004]) bring some light to the problem: when training data is scarce, generative classifiers can outperform discriminative ones. Table I shows some typical results obtained for verification using SVM.
Table I – Equal error rate (EER) for verification systems using wired phone speech (BaseIME).

	
	20 sec.
	10 sec.
	5 sec.

	Baseline (IME)
	0.67%
	0.85%
	1.13%

	MFCCEDA48-GMM
	0.05%
	0.89%
	1.78%

	MFCCEDA48-SVM
	1.1%
	1.4%
	2.3%


5) CONCLUSIONS

For BaseIME, we improved upon previously published results [SBT’03], but GMM outperformed SVM…
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