
ABSTRACT 

 
The standard training approach for a hidden Markov 
model (HMM) based speech recognition system uses an 
expectation maximization (EM) based supervised training 
framework to estimate parameters. EM-based parameter 
estimation for speech recognition is performed using 
several complicated stages of iterative reestimation. 
These stages are heuristic in nature and prone to human 
error. This paper describes a new training recipe that 
reduces the complexity of the training process, while 
retaining the robustness of the EM-based supervised 
training framework. This paper show that the network 
training recipe can achieve comparable recognition 
performance to a traditional trainer while alleviating the 
need for complicated systems and training recipes for 
spoken language processing systems. 

1. INTRODUCTION 

Standard hidden Markov model (HMM) based speech 
recognition systems typically use a forced alignment 
stage during training that produces a single phonetic 
transcription for an utterance [1]. This phonetic 
transcription is then used to guide the parameter 
reestimation process. To optimize performance, one 
typically generates this transcription several times using 
an iterative approach involving the best model set 
available at that stage of the iteration. To a naïve user of 
speech recognition technology, the need for an 
automatically generated phonetic transcription of the data 
appears to create a “chicken and egg” problem when 
developing a new application. 

Further, for many years, we have supplied detailed 
online support of a public domain speech recognition 
system [2]. It has been our experience that more than 
75% of our support requests involve situations in which 
the intermediate files required for training, such as a 
phonetic alignment, do not correctly correspond to the 
input audio data. Another common problem is that 

generalization of these context-independent phone 
transcriptions to context-dependent phone transcriptions 
often causes similar errors in the experimental setup.  

Another significant complication in most speech 
recognition systems is silence modeling. Approaches that 
rely on a forced alignment stage during training also 
often have to identify and introduce silence into the 
transcriptions. Typically, this is done through the use of a 
silence phone. Several stages of training are often 
devoted to identification of silence and training of this 
silence model. 

Hence, it has been our goal to simplify the training 
process without compromising performance. This is a 
non-trivial problem since it is well-known that 
bootstrapping procedures in which complexity is 
introduced incrementally have been very successful over 
the years in the development of speech recognition 
technology.  

2.  NETWORK TRAINING 

A popular approach to speech recognition utilizes a 
hierarchical network of knowledge sources, as shown in 
Figure 1. The training paradigm employs maximum 
likelihood estimation (MLE) within the expectation 
maximization (EM) framework. The actual parameter 
estimation is implemented using a computationally 
efficient algorithm known as Baum-Welch reestimation 
(also referred to as the Forward-Backward algorithm). A 
detailed description of the training recipes used in our 
system and the Baum-Welch reestimation equations used 
in training can be found in [1,2].  

The network training approach on the surface 
appears identical to the training paradigm used in a 
traditional HMM trainer. Baum-Welch reestimation is 
applied to the hierarchical network shown in Figure 1. In 
this paper, we show that training these networks directly 
can simplify the training process and provide comparable 
performance.  

When compared to the standard left-to-right training 
approach used in a traditional system, Baum-Welch 
training can be viewed as providing the system a 
capability to make soft decisions. Probabilities about 
pronunciations, and other alternate paths through the 
network, receive contributions from all data. It is well 
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known that systems involving soft decisions [3] can 
provide better performance, though these systems may 
take longer to converge during training. 

The network trainer directly estimates the parameters 
of multi-path graphs at all levels of the hierarchical 
network of knowledge sources. In Figure 2, we compare 
one level of the graph, a phone-level pronunciation 
network, to an equivalent expanded graph. Traditional 
HMM training recipes will often select one of the linear 
paths and update the corresponding models. The models 
corresponding to the alternate paths (and the associated 
arcs) will not be updated, unless a phone is common to 
both paths (as is the case in Figure 2). 

The network trainer performs Baum-Welch 
reestimation across all networks simultaneously. It can be 
used to train probabilistic language models, 
pronunciation models, or acoustic models. Since the 
Baum-Welch algorithm is used at each level, this 
approach effectively makes soft decisions about symbol 
assignments. Such a feature is particularly useful when 
modeling pronunciations. It leads to better generalization 
during recognition, since unseen pronunciations can 
potentially occur in the network training paradigm. 

This rather simple difference in the training 
paradigm has more profound implications for silence 

modeling. Silence modeling is one of the more crucial 
aspects of building a good speech recognition system. In 
traditional approaches, silence is often inserted into a 
word pronunciation as a phone. The lexicon will contain 
two entries for a word, one terminating in a short pause, 
and one terminating in a long silence (e.g., “have” would 
be represented as “hh ae v sp” and “hh ae v sil”). These 
silence models in turn contain a topology that allows 
silence to be skipped. During the forced alignment stage 
of the training procedure, these silences must be 
identified explicitly in the transcriptions. 

In the network training recipe, the forced-alignment 
stage is eliminated. Silence is simply treated as an 
alternate word in the pronunciation. The topology of the 
silence word allows for a long and a short path through 
the model, as shown in Figure 3. The multi-path silence 
word model removes the need for making a hard decision 
as to the duration of the silence after a word. During 
training, arbitrary amounts of silence are allowed as an 
optional word everywhere in the network: before and 
after an utterance, and between words. The trainer makes 
an optimal decision about the placement of silence by 
estimating probabilities the same way these probabilities 
are estimated for states in the acoustic models. 

The combined impact of this flexibility is that 
training is driven entirely from the word-level 
transcription. No intermediate forced alignments are 
needed. A transcription is augmented with optional 

 
Figure 1: An example of a hierarchical system that contains
embedded knowledge sources at each level. 

 

(a) A pronunciation network for the word “have”. 

 
(b) An expanded network. 

Figure 2: In a traditional HMM training recipe, one of the three 
alternate pronunciations shown in (b) will be selected and 
trained. In the network trainer, the network in (a) is reestimated 
directly. 

 
Figure 3: An example of a multi-path silence model topology
used by the network trainer. 



silence, and then a standard Baum-Welch training is 
performed across the entire hierarchy. In the next section, 
we will analyze the impact this has on overall 
performance. 

3.  EXPERIMENTS AND ANALYSIS 

To prove our hypothesis, experiments were 
conducted on three corpora representing industry-
standard tasks: TIDigits (TID) [4], OGI 
Alphadigits (AD) [5] and Resource 
Management (RM) [6]. All experiments were conducted 
with a context-independent (CI) speech recognition 
system since this is the stage most often impacted by the 
proposed changes. The baseline CI system was based on 
a context-dependent (CD) system that achieves near state 
of the art performance on the three tasks included in this 
study [7, 8]. The CI system did not use any forms of 
adaptation or normalization in this study beyond that 
implied by a standard speaker independent system. 

Introducing the full flexibility of the network trainer 
at the start of the training process can often backfire. One 
instance of this is when we allowed too much flexibility 
when training the silence model. For example, using an 
optional silence at the beginning and end of the 
transcription resulted in poor recognition performance on 
TIDigits. The word alignments in Figure 4 show the 
degree to which an underestimated silence can misalign 
the segment boundaries. The alignments compare the 
hypothesis for a fixed and an optional silence to the 
reference transcription. While the fixed silence 
hypothesis comes close to the reference, the optional 
silence hypothesis is misaligned. 

We experimented with several ways to fix this 
including different training recipes. The source of the 
problem is that the silence model needs some amount of 
seeding before it can converge to the correct result. It 
turns out that letting both the silence and speech models 
learn simultaneously, results in a suboptimal solution. 
Our best solution was to force silence at the beginning 
and ends of an utterance using the three-state long silence 
path through the silence model. This is something that is 
common in many training systems. We still allow silence 
to be optional between words. These two silence models 
share emission probabilities so the final parameter count 
is kept virtually the same. Using a fixed silence restricts 
the flexibility of the network trainer; however, this is a 
small price to pay compared to what we gain in terms of 
the overall flexibility of the system. 

A summary of the experimental results is given in 
Table 1. On the TIDigits and AlphaDigits tasks, 
performance was slightly better for network training. On 
the Resource Management task, performance was slightly 
worse. All differences are not statistically significant 
according to the NIST MAPSSWE test [9]. Further, we 
expect these differences would converge as subsequent 
stages of context-dependent training and Gaussian 
mixture splitting were performed. 

The error modalities for the two systems were not 

significantly different. Introducing increased flexibility 
into the training process at the early stages of training can 
often backfire. Hence, we examined the convergence of 
the overall likelihood of the data given the models as a 
function of the number of training iterations. An example 
for Resource Management is shown in Figure 5. The 
convergence of the likelihood was similar for all three 
databases. 

4.  CONCLUSIONS AND FUTURE WORK 

In this paper, we have explored the effectiveness of a 
network training approach that simplifies the training 
process. The basis of this approach is a hierarchical 
implementation of the Baum-Welch training algorithm. 
Network training allows any level of a hierarchical 
system to be trained using supervised learning. This 
approach was evaluated on three different databases: 
TIDigits, OGI Alphadigits and Resource Management. 
No significant change in word error rate was observed for 
a speaker independent speech recognition system that 
used single Gaussian mixture context-independent phone 
models. 

Since the context-dependent stages of the training 
process are a direct extension of the context-independent 
stage, there are no significant changes to the training 

Figure 4: A comparison of word-alignment using fixed and 
optional silence models at transcription bounds. 

Database Traditional 
HMM 

Network 
Trainer 

TID 7.7% 7.6% 
AD 38.0% 35.3% 
RM 25.7% 27.5% 

Table 1: A summary of results on three popular databases that 
represent tasks ranging from digit recognition to medium-sized 
vocabulary command and control recognition. 



process once the context independent stages of training 
have been completed. However, a hierarchical lexical tree 
decoder is needed to decode the cross-word models. Such 
a decoder is currently under development for the system 
that incorporates the network training approach. 

We are also independently pursuing the 
incorporation of discriminative training into our system, 
as well as new statistical models based on support vector 
machines and relevance vector machines. These 
approaches will make use of the network training 
paradigm. It will be interesting to determine the benefits 
of network training of multi-path acoustic models using 
discriminative training. 

The features described in this paper are available in 
the latest releases of our public domain speech 
recognition system [10]. A more detailed description of 
this work is available at [11]. 
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Figure 5: A comparison of the convergence in log likelihood 
between the two training paradigms for the Resource 
Management task. All three databases exhibited similar behavior. 


