Proportional Bandwidth, Delay, and L oss Differentiation

Manimaran Selvaraj

Sclmage, Inc, TITL
Muississippi State University
glaz@ece.msstate.edu

Los Altos, CA
mani@scimage.com

ABSTRACT

A robust adaptive scheduler for proportional delay differ-
entiation services is presented. Proportional services are
further policed by a class based packet dropper. Our pro-
posed combination of the adaptive scheduler and the packet
dropper treats the traffic classes proportionally in terms of
three QoS metrics: bandwidth, delay, and packet loss, si-
multaneously. Simulation experiments with bursty traffic
validate our claim.

KEY WORDS
QoS, Proportional DiffServ, Scheduling

1 Introduction

Many Internet service providers (ISP) are now beginning
to make use of techniques that differentiate one user appli-
cation from the other. This relative differentiation is nec-
essary due to several issues such as QoS provisioning and
pricing policies. In Relative Differentiated Services a traf-
fic class is treated relative to another traffic class. In this
approach, Internet traffic is grouped into N finite number
of classes. Classi gets a better or at least no worse service
than classi-1. This is achieved through the use of packet
schedulers and packet accept/discard rules.

The treatment meted out to the applications can be
differentiated in terms of one or a combination of the three
performance metrics: bandwidth, delay and packet loss.
From an application point of view, traffic ought to be dif-
ferentiated in terms of the delay and packet loss, since they
differ in delay and loss requirements. Here, proportional
delay or loss differentiation is most suitable. From an ISP’s
point of view, users have to be allocated bandwidth accord-
ing to the service agreement. Thus, bandwidth differentia-
tion is needed in this case.

Several scheduling algorithms [1][2][3][4][5] were
proposed to achieve relative differentiation. However, all
these algorithms provide a relative service differentiation
in terms of only one of the three peformance metrics. Al-
though, the work in [1], presents schemes to achieve a pro-
portional delay as well as loss differentiation, a study of
co-existence of the loss and delay differentiation schemes
was not performed. Several of the schemes were also com-
putationally demanding.

In this work we achieve a proportional bandwidth, de-
lay, and loss differentiation simultaneously. The packet de-

Georgios Y. Lazarou Rose Hu

TITL
Mississippi State University
hu@ece.msstate.edu

lay and loss are controlled to achieve a relative bandwidth,
delay, as well as loss differentiation, all three at the same
time. While controlling the delay by means of an adaptive
version of the HPD scheduler [1], the packet loss is taken
care of by a class based RED packet dropper. We achieve a
proportional bandwidth differentiation by selectively drop-
ping and delaying packets of different classes.

The remainder of the paper is organized as follows.
Section 2 describes the previous work on the proportional
delay and bandwidth differentiation. The proportional de-
lay mechanism and the proportional bandwidth mechanism
are discussed in sections 3 and 4 respectively. In section 5,
we evaluate the performance of the proposed scheme, and
finally section 6 concludes the paper.

2 Reated Work

In the Proportional Delay Differentiation (PDD)[1] model,
the ratio of the overall long term average delay, d, experi-
enced by two different traffic classes i and j is equal to the
ratio of their corresponding delay differentiation parame-
ters or class weights g:

IE=Y

G -
3 q (i,j=1..N) Q)
The class weights {qi}, are ordered such that the higher
classes experience less delay than the lower classes.

The work in [1] proposed the use of three packet
schedulers to achieve proportional delay differentiation.
The schedulers are the proportional average delay sched-
uler (PAD), the waiting time priority scheduler (WTP),
and the hybrid proportional delay scheduler (HPD). The
HPD scheduler was an attempt to design a packet sched-
uler which had the best features of both PAD and WTP.
The normalized average delay of the HPD is given as:

hi(t) = (9)di(t) + (1 — g)Wi(t) O]

where 'g' is the HPD parameter, W(t) is the normalized
head packet waiting time as calculated by WTP %, and di(t)
is the normalized delay as calculated by PAD 2. The HPD
parameter’'g’ plays a very significant role in HPD’s perfor-
mance. Under heavy loads, the value of 'g’ does not affect
the performance of HPD, since both PAD and WTP work

Laverage of waiting times of first packet in queue
2average of delay experienced by all dequed packets

Input Queues

m 1 N1
Output Queue
v I THLJ soaie | = T
as T 1L _
Weight
i Update

Compute Compute
Delay Ratio New Weights

Figure 1. Adaptive HPD

well under heavy loads. But at lower utilization, 'g’ must
be set close to 1 so that HPD works more like PAD [1].
The value of g’ is set to 0.85 in simulation experiments. In
general, the WTP and HPD schedulers perform better than
the PAD. PAD is able to meet the PDD model only when
the delay differentiation parameters are available; whereas,
WTP works only under heavy loads.

A relative bandwidth differentiation between TCP
micro-flows was achieved in [6] by making use of the
weighted version of RED, called WRED [7]. In [6],
WRED was used to achieve a per-flow relative loss dif-
ferentiation. They further proposed that a relative band-
width differentiation could be achieved by a combination
of a relative loss and a relative delay differentiation of the
TCP micro-flows. Unlike [6], we achieve a relative band-
width differentiation not between micro-flows, but between
aggregates. This Proportional Bandwidth Differentiation
model is the bandwidth analogy of the Proportional Delay
Differentiation Service model [1].

3 Proportional Delay M echanism

Motivated by the works in [2] and [3], we made the HPD
packet scheduler [1] adaptive, so that the scheduler main-
tains the desired delay differentiation ratio under realistic
bursty network traffic conditions. The adaptivenessin the
HPD scheduler helped to maintain the desired proportional
delay differentiation. Unlike other adaptive approaches
[2] [3], the adaptive approach proposed here is much sim-
pler, and it does not depend on the network load.

3.1 Adaptive HPD

The foremost work [1] on the proportional delay differen-
tiation model gave examples of the environments in which
the model worked. But, the schedulers mentioned in [1]
did not achieve a proportional delay differentiation under
low and medium system utilization. We propose a ma-
jor addendum to the HPD scheduling scheme by adding
a feedback component to the scheduler. We call this the
adaptive HPD (AHPD) scheduler and is depicted in Fig.
1. In this proposed new scheduler, the actual delay ratio
between two traffic classes is periodically monitored and
the class weights are changed in such a way that the actual

delay ratio is always maintained at the desired value.

Let D; be the corresponding average end-to-end delay
experienced by the AF classes AF. Let the delay differen-
tiation ratios be Aj = %. The overall average delay D; is
inversely related to the normalized delay hi(t), because the
scheduler serves the queue with the maximum normalized
delay, i.e., if hi(t) gets higher, then that particular queue
is more likely to be served and the corresponding overall
delay D; will be reduced. Hence, the delay differentiation
ratios can then be represented as:

_ Dj Nﬁij'l(t)
Diz1 hi(t) ’

i 3
Our scheduler works to maintain the delay differentiation
ratios A\; at a desired level by varying the AF class weights
i

Whenever a packet is served, A;j is computed using
Equation (3). If the scheduler delay differentiates perfectly,
A will always be equal to a desired (constant) value K. So,
if the delay ratio falls inside a window (K —&,K + €) around
the desired value K, the scheduler parameters are left un-
changed. The scheduler adjusts the weights whenever the
delay differentiation ratio A; deviates from its correspond-
ing window (K — ¢, K +¢€).

The weights are changed according to the weight
function:

g=g+%¥ & gi=¢g1-¥ for K<2-¢
fla)=

g =gt & gi_1=d" for K—e<h <K+e

G=0G—-® & 0g-1=0-1+P for A>K+e "
4
where "t is the initial value of weight i. This func-
tion was formulated based on the property that decreas-
ing/increasing the weight of a class affects the average de-
lay of all other classes as well as its own average delay [1].
In the simulation experiments, € was set to 0.25. € is set
based on a tradeoff between the number of computations
and the stringent maintenance of the delay ratio. Setting €
= 0 would result in weight update computations upon every
packet arrival, while a very higher value of € (say € > 1),
would result in a performance similar to the original HPD
scheme. In (4), W and @ are calculated as:

(qimax - qi:urr) X |(K - 8) _Ai|
(qirrax_ qlm'n)

W=

b= (Oex — qch_Jrr) X |AI —(K+¢)|
(Glve — Girin)

where gl and g, are the maximum and minimum pos-
sible values of a class weight respectively, and i, is the
current value of the weight in a cycle. |A; — (K +¢€)]| rep-
resents the deviation of the computed delay differentiation
ratio A from the window (K —&,K +€). (Qlyex— Q) i the
range of weights and (0., — Glyrr) is the maximum value
by which the current value of a weight can be increased or
decreased. W and & were designed in such a way that de-
viations in the delay ratios are corrected by an increase or
decrease of the weights in a linear fashion.

The class weights are initially set such that the ideal
delay ratio is obtained. For example, when the initial ideal
weight values are set as g1 = 1, g2 = 2, and gz = 4, the de-
sired delay ratio, which must be proportional to the ratio
of weights, is & = % =K = 2. Table 1 gives the corre-
sponding maximum and minimum weights for each of the
AF classes. The maximum (minimum) value of a particu-
lar weight is computed as the average of the weight’s initial
value and the initial value of the next higher (lower) weight.

Table 1. Maximum and minimum weights for each class.

Class | Initial | Maximum | Minimum
Weight Weight Weight
AFL | g% =1] q¥ax=15 | d%,=05
AF2 | ghit=2 | Opex=3 Omin = 1.5
AF3 | g1 =4 | Ofex=6 | CGfin=3

The action taken by the proposed AHPD scheduler
when packets arrive is described in the following:

1. Initialization. Set the initial parameters g, g, and the
desired delay differentiation ratio Aj. Compute initial
h;. When no packet has been served, select the queue
to start service using the initial weights q;.

2. Whenever a queue is served, update the parameters as
follows.
(a) Calculate new A using equation (3).
(b) Update the weights gs and g using equation (4).
(c) Calculate new A using equation (3).
(d) Update weight gi using equation (4).
(e) Compute the new normalized average delay by
using equation (2).

3. Select the queue with the maximum normalized aver-
age delay and serve that queue.

4. Save the updated weights for the next cycle.
5. Go back to 2.

To summarize, we first update the weights of the two high-
est priority classes. Then the weight of the next lower prior-
ity class is updated based on the weight of its predecessor.

4 Proportional Bandwidth Mechanism

Based on [6], we propose the use of a RIO-like [8] packet
marking and dropping scheme, where the RED drop prob-
abilities of the different classes are proportional to each
other. But, we achieve a per-aggregate bandwidth differ-
entiation. In our scheme, the edge router upon receiving
a packet, marks it as either green, yellow or red colored
packet based on the packet’s class. Thus, all the flows

within a class are colored same. The packets with different
colors experience different accept/discard treatment. We
call our scheme colored-RED (CRED), since the RED pa-
rameters are not the same for the different colors.

In the simulation experiments, we applied CRED on
a system with 3 AF classes, each with 2 drop precedences.
In CRED, packets belonging to AF3, AF2, and AF1 classes
are colored green, yellow, and red respectively. The drop
probability for AF3 class is the smallest of the three. The
average queue size and the maximum drop probability are
calculated in such a way that various classes are proportion-
ally treated. The maximum drop probability, maxp, of the
different AF classes is fixed in the same way as in [6]. The
maxp values are set as: maxp(red) = BDP * maxp(yellow)
and maxp(yellow) = BDP * maxp(green), where BDP is the
bandwidth differentiation parameter.

A major difference between CRED and [6] is that, in
CRED, the average queue size (AQS) calculation of a class
is independent of the other class packets. In [6] the average
queue size is computed as:

AQSyri = TSW estimate based on (AF1 + AF2 + AF3) packets, i =1,
2,3

But in CRED,

AQSyri = TSW estimate based on the AFi packets alone.
where TSW refers to time sliding window technique of [8].

This is done in order to adhere to the AF PHB specifications
[9], which state that the servicing of one AF class must be
independent of the other AF classes.

5 Performance Evaluation

The performance of the proposed combination of the adap-
tive HPD and colored RED schemes is evaluated through
simulation experiments. All experiments are performed
using the network simulator ns-2 [10]. The robustness of
the proposed scheme is tested using bursty (Pareto) traffic
sources. The average value of the burst and idle times are
set to 500 msec each and the distribution’s shape parameter
o is set to 1.2. All the TCP agents use the selective ac-
knowledgment (SACK) mechanism. All packets are 1000
bytes in length.

The proposed scheme is also compared with a com-
bination of the original HPD packet scheduler [1] and the
RI10 dropping scheme. For this combination, the same RIO
parameters are used for all classes: (10, 20, 0.04) for OUT
packets and (20, 40, 0.04) for IN packets, where the three
parameters represent (mingn, men, Méxp), respectively.

5.1 Simulation Setup

The topology (Fig. 2) used in all simulation experiments,
consists of 9 sources and 9 destinations connected through
2 edge routers and 2 core routers. The edge routers have

Figure 2. Simulation Topology

built-in packet meters, policers, and markers. The core
routers only employ the proposed dropping algorithm and
the proportional delay scheduler. The packet meters use the
TSW technique [8] to compute each flow’s instantaneous
sending rate, based on which the packet’s drop probability
is computed. Packets from the customer network are clas-
sified (marked) to one of the 3 AF (green, yellow, or red)
classes based on the service agreement. Further, the edge
routers meter the flows and subject the packets to one of the
two drop threshold levels. Table 2 gives the CRED parame-
ter set used in the simulation experiments. In all the routers
the buffer length is set high enough so that the queues never
experience buffer overflows. In all the cases, the bottleneck
link bandwidth is set to 8 Mbps. All the simulation experi-

Table 2. Parameters for CRED

Mingy, | maxp | maxp
Red/ AF11 20 40 0.08
Red/ AF12 10 20 0.16

Yellow / AF21 20 40 0.04

Yellow / AF22 10 20 0.08

Green/ AF31 20 40 0.04

Green/ AF32 10 20 0.02

ments are performed for a period of 300 seconds.

5.2 Results

Results are presented in the form of bar plots. The three
horizontal lines in the throughput differentiation bar plot
represent the target rates of the three AF classes: 380 Kbps,
760 Kbps and 1520 Kbps respectively. Likewise, the hori-
zontal line in the delay differentiation bar plots represents
the minimum one way end-to-end delay of 32 msecs that
each packet would experience. Assuming negligible trans-
mission, processing, and queuing delays, the 32 msec then
consists only of the propagation delay.

Three different simulation experiments were per-
formed with On-/Off- Pareto sources and constant bit-rate
(CBR) sources. Firstly, packets from Pareto sources are
carried over TCP SACK. Secondly, all traffic is carried over
UDRP. Lastly, one flow in each class carries CBR traffic over
UDP, while the other flows carry Pareto traffic over TCP.
The last experiment helps study the TCP/UDP interactions.
Fig. 3, 4, and 6 show the corresponding results. It is obvi-
ous from the figures and the delay comparison Table 3 that
a bandwidth, delay, and loss differentiation is achieved si-
multaneously in all the cases. In all the three experiments,

Throughput Differentiation Delay Differentiation
2000 150

1500

1000

0

Achieved Rate in kbps
@
g
° S
N
Average delay in msec
@ S
3 8

1 3 1 2 3
3 AF Classes - 3 Flows Each 3 AF Classes - 3 Flows Each

Loss differentiation

1

0.!

Loss rate in %
o @ - o
-
w

2
3 AF Classes - 3 Flows Each

Figure 3. AHPD: Pareto over SACK

Throughput Differentiation Delay Differentiation
2000 250

1500

1000

Achieved Rate in kbps
@
g
° S
N
Average delay in msec
[P
a 5 &
o 3 8 8

1 3 1 3
3 AF Classes - 3 Flows Each 3 AF Classes - 3 Flows Each

Loss differentiation

Loss rate in %
N 2 «
o S S 3
-
w

2
3 AF Classes - 3 Flows Each

Figure 4. AHPD: Pareto over UDP

our scheme maintains the delay differentiation ratio better
than the original HPD scheme.

In the first experiment (Fig. 3), one of the AF3 flows
in Fig. 3 appears to receive a lesser share of the bandwidth.
But, the fairness index® calculated proves otherwise. The
fairness indices calculated for the 3 classes in the first ex-
periment are 0.99, 0.99 and 0.99 for AF1, AF2 and AF3
classes respectively. It is obvious from Fig. 5 and 7 that
the original HPD and RIO combination fail to bandwidth
differentiate in the presence of UDP flows. On the other
hand, our CRED scheme proportionally distributes band-
width in the second experiment. In the third experiment,
although bandwidth differentiation was achieved, the UDP
flows get a slightly higher share of the bandwidth. The fair-
ness indices calculated for this experiment are: 0.91, 0.91,
and 0.99 for the 3 AF classes. This indicates that the TCP
flows have got their fair share of bandwidth. With the in-
creasing number of applications using UDP, the ability of
our scheme to effectively bandwidth and delay differentiate

SFairness Index = [y x;]z/[N.zxiz] where x; is the mean throughput
of traffic source i, and N is the total number of sources under considera-
tion.

Throughput Differentiation Delay Differentiation
2000 200

1500

=
@
3

1000 100

Achieved Rate in kbps
a
g
o 8
N
Average delay in msec
a
° g

1 3 1 3
3 AF Classes - 3 Flows Each 3 AF Classes - 3 Flows Each

Loss differentiation

Loss rate in %
N 5 «
o S S 3
-
w

2
3 AF Classes - 3 Flows Each

Figure 5. Original HPD: Pareto over UDP

Throughput Differentiation Delay Differentiation
2000 250

1500

1000

Achieved Rate in kbps
a
g
o 8
Average delay in msec
(A
o 5 &
o 8 8 8

1 2 3 1 2 3
3 AF Classes - 3 Flows Each 3 AF Classes - 3 Flows Each

Loss differentiation

~
3

Loss rate in %
BN W s a9
o 5 8 &8 &8 & 3

1 2 3
3 AF Classes - 3 Flows Each

Figure 6. AHPD: CBR/UDP and Pareto/TCP

bursty traffic even in the presence of UDP flows supports
our claim that our scheme is more robust. In all the three
experiment loss differentiation is achieved. The UDP flows
experience very high loss rates because, they do not regu-
late themselves when congestion takes place. In the third
experiment, our dropping scheme strictly drops all the mis-
behaving UDP packets. These packets lost are in excess of
their service agreement.

6 Conclusions

The need for maintaining the delay ratio between classes
grows as the number of applications increases. Experi-
mental results prove that the delay differentiation ratios ob-
tained using our scheme is very much close to the ideal
desired value. Moreover, our scheme also maintains the de-
lay ratios better than the original HPD scheme. We achieve
this by delaying the low priority class packets longer in the
queue.

Loss rates and loss differentiation is better in the
experiments which use congestion responsive transport
agents (TCP) than those experiments which use non-

Throughput Differentiation Delay Differentiation
2000 200

1500

=
@
3

1000 100

Achieved Rate in kbps

@
3
3
@
3

Average delay in msec

)
o

1 3 1 3
3 AF Classes - 3 Flows Each 3 AF Classes - 3 Flows Each

Loss differentiation

Loss rate in %

Now

1 2 3
3 AF Classes - 3 Flows Each

Figure 7. Original HPD: CBR/UDP and Pareto/TCP

Table 3. Delay Comparison

Traffic Scheme Average Class Delay msec | Delay Ratio
Type AFL | AR2 | AR | 355 | 555

Pareto AHPD & CRED | 14333 | 8259 | 5693 | 1.73 | 145

over TCP HPD&RIO | 13596 | 8639 | 6140 | 157 | 141

Pareto AHPD & CRED | 18127 | 97.22 | 6312 | 186 | 1.4

over UDP HPD& RIO | 167.46 | 10446 | 69.96 | 160 | 1.49

1CBR/IUDP | AHPD & CRED | 20051 | 9885 | 59.49 | 2.03 | 1.66

& 2Pareto/TCP | HPD&RIO | 15471 | 9554 | 66.17 | 162 | 144

responsive transport agents (UDP). A good example of this
case is the experiment with the CBR sources. Nevertheless,
the non-responsive flows are also proportionally loss dif-
ferentiated, but have to pay a price in the form of a higher
loss rate. Also, CBR traffic, especially over UDP affects
the fair distribution of resources in an uncontrolled envi-
ronment. Our scheme effectively punishes the misbehaving
UDP flows appropriately and distributes bandwidth propor-
tionally. Since the scheduler works entirely based on the
packet’s class rather than the underlying transport mech-
anism, the delay differentiation is not affected due to the
presence of UDP. For example, in the cases using UDP,
the existing algorithm (HPD and RIO) even failed to band-
width differentiate. While our scheme bandwidth differen-
tiated in a far better manner.

In this paper, we have proposed a method to simul-
taneously control the bandwidth, delay, and packet loss in
a proportional manner. We argue that the bandwidth, de-
lay, and loss can be controlled simultaneously by acting on
the delay and packet loss alone. Simulation results vali-
date our claim. Comparison with other schemes shows our
scheme’s superiority.

References

[1] C. Dovrolis, “Proportional differentiated services:
Delay differentiation and packet scheduling,”

|EEE/ACM Transactions on Networking, vol. 10, pp.
12-26, February 2002.

[2] M.K.H.Leung,J.C.S. Lui,andD.K.Y. Yau, “Adap-
tive proportional-delay differentiated services: Char-
acterization and performance evaluation,” |IEEE/ACM
Transactionson Networking, vol. 9, pp. 801-817, De-
cember 2001.

[3] L. Essafi, G. Bolch, and A. Andres, “An adaptive
waiting time priority scheduler for the proportional
differentiation model,” in Proc. ASTC HPC, Seattle,
2001, April 2001.

[4] M. E. Markaki, M. P. Saltouros, and I. S. Venieris,
“Proportional packet loss differentiation and buffer
management for differentiated services in the inter-
net,” in Proc. of 25th Annual |EEE Conf. Local Com-
puter Networks 2000, 2000.

[5] C. C. Li, S. L. Tsao, M. C. Chen, Y. Sun, and
Y. M. Huang, “Proportional delay differentiation ser-
vice based on weighted fair queuing,” in Proc. 9th
Int. Conf. Computer Communications and Networks,
2000, 2000.

[6] T. Soetens, S. Cnodder, and O. Elloumi, “A relative
bandwidth differentiated service for tcp micro-flows,”
in Proc. First IEEE/ACM Int. Symp. on Cluster Com-
puting and the Grid, 2001, 2001.

[71 G. Ruzzo and N. Chiminelli, “Wred tun-
ing for bottleneck link,” [Online] Available:
http://carmen.cselt.it/papers/wred-cern/home.html.

[8] D. Clark and W. Fang, “Explicit allocation of best-
effort packet delivery service,” IEEE/ACM Transac-
tions on Networking, vol. 6, no. 4, pp. 362-373, Au-
gust 1998.

[9] J. Heinanen, “Assured forwarding phb group rfc
2597,” June 1999.

[10] UCB/LBNL/VINT. (2002) The network simulator ns-
2. [Online]. Available: http://www.isi.edu/nsnam/ns/

[11] C. Dovrolis and P. Ramanathan, “Proportional differ-
entiated services, part ii: Loss rate differentiation and
packet dropping,” in IEEE/IFIP Int. Workshop Qual-
ity of Service (IWQ0S), June 2000.

