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Abstract
In this paper, we analyze the results of the recent Aurora large
vocabulary evaluations. Two consortia submitted proposals on
speech recognition front ends for this evaluation:
(1) Qualcomm, ICSI, and OGI (QIO), and (2) Motorola,
France Telecom, and Alcatel (MFA). These front ends used a
variety of noise reduction techniques including discriminative
transforms, feature normalization, voice activity detection, and
blind equalization. Participants used a common speech
recognition engine to postprocess their features. In this paper,
we show that the results of this evaluation were not
significantly impacted by suboptimal recognition system
parameter settings. Without any front end specific tuning, the
MFA front end outperforms the QIO front end by 9.6%
relative. With tuning, the relative performance gap increases to
15.8%. Both the mismatched microphone and additive noise
evaluation conditions resulted in a significant degradation in
performance for both front ends.

1.   Introduction
The Aurora large vocabulary (ALV) evaluations were
conducted to standardize an advanced front end (AFE-WI008)
for distributed speech recognition applications in a client-
server architecture [1]. The ALV evaluations were the second
in a series of evaluations designed to promote the development
of noise robust speech recognition. The goal for the ALV
evaluation was to achieve a 25% relative improvement in word
error rate (WER) across a variety of noise conditions compared
to the MFCC WI007 front end [1]. The details of the
experimental setup and an extended analysis of the baseline
system can be found in [1].

A summary of the results presented at the ALV Workshop
held in Stuttgart, Germany in February 2002 are shown in
Table 1. The overall performance measure for a system was
computed as an average of several WERs. First, an average
WER was computed across the 14 test sets used in the
evaluation for each training condition. Next, the WER for each
training condition was averaged. Since the evaluation was
conducted at two sample frequencies (8 and 16 kHz), the final
WER was the average across both sample frequencies. This
number is denotedOverall WER in Table 1.

Two consortia participated in the ALV evaluations. The
first front end [2] was a collaboration between the CDMA
Technologies Group at Qualcomm, the Speech Group at
International Computer Science Institute (ICSI), and the
Antropic Signal Processing Group at Oregon Health and
Science University (OGI). This front end is referred to as the
QIO front end and featured three key components: a

15-dimensional MFCC based feature vector generated us
data-driven LDA-derived filters, on-line mean and varianc
normalization, and a multilayer perceptron-based voice activ
detector (VAD) [2]. This front end achieved a combined sco
of 37.5% in the ALV evaluation.

The second contribution [3] resulted from a collaboratio
between the Human Interface Lab at Motorola Labs, Fran
Telecom R&D, and Alcatel SEL AG (Germany). We refer to
this contribution as the MFA front end. It is based on a 12
dimensional MFCC feature vector plus a weighted average
log-energy and the zeroth cepstral coefficient. It employs
two-stage mel-warped Wiener filter for suppressing additiv
noise [4]. It also incorporates a VAD algorithm that is based o
the acceleration of several energy-based measures. Furthe
employs a least mean square error blind equalization algorit
for channel normalization. The MFA front end achieved
combined score of 34.5% in the ALV evaluation.

Because these evaluations were conducted using a gen
speech recognition system which was not specifically tuned
either front end, it can be argued that the performance achie
by these front ends was suboptimal. Parameters such as
language model scale factor and the word insertion pena
often must be adjusted for a specific front end. Hence, an op
issue was whether the ranking of these systems would cha
if the recognizer was tuned independently for each front end

Therefore, the main goal of this paper is to explore th
sensitivity of the results of this evaluation to parameter tunin

Table 1: The results of the ALV evaluation using a generic
baseline speech recognition system (presented at the Feb. 2
Aurora post-evaluation meeting).

Baseline MFCC: Overall WER — 50.3%

8 kHz — 49.6% 16 kHz — 51.0%

TS1 TS2 TS1 TS2

58.1% 41.0% 62.2% 39.8%

QIO: Overall WER — 37.5%

8 kHz — 38.4% 16 kHz — 36.5%

TS1 TS2 TS1 TS2

43.2% 33.6% 40.7% 32.4%

MFA: Overall WER — 34.5%

8 kHz — 34.5% 16 kHz — 34.4.%

TS1 TS2 TS1 TS2

37.5% 31.4% 37.2% 31.5%
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Key recognition parameters, described at length in [5], were
optimized independently for each front end. The overall results
were then tabulated under these optimized conditions and
analyzed across a broad range of noise and microphone-
mismatch conditions to assess promising contributions from
these front ends.

2.   Experimental Design
The ALV evaluation is based on the 5,000 word closed-loop
WSJ0 task [6], and referred to as the Aurora-4 database [7].
The evaluation was conducted at two sampling frequencies —
the original WSJ0 16 kHz data and a downsampled version at
8 kHz. G.712 filtering was used to simulate the frequency
characteristics at an 8 kHz sample frequency and P.341
filtering was used at 16 kHz. Two training sets (denoted TS1
and TS2), 14 test sets (2 microphone conditions x 7 noise
conditions), and 14 short development test sets (2 microphone
conditions x 7 noise conditions) were defined for each
sampling frequency. The training sets consisted of 7,138
utterances, a short development set consisted of 330 utterances,
and an evaluation set consisted of 166 utterances. The
construction of these short sets is described in detail in [5].

The two microphone conditions represent the standard
conditions supplied with the WSJ Corpus. Parallel recordings
were made in which the first channel was always collected with
a Sennheiser microphone, while the second channel used one
microphone selected from a group of alternative microphones.
Seven types of noise were digitally added to the data at
specified SNRs. The noise types included street traffic, train
stations, cars, babble, restaurants and airports.

The baseline system for the ALV evaluation was a public
domain large vocabulary system developed by the Institute for
Signal and Information Processing at Mississippi State
University in collaboration with the Aurora Working
Group [5,8]. The acoustic models consisted of state-tied
4-mixture cross-word triphones. The WSJ0 standard bigram
language model (supplied for the 5k closed-loop task) was
used to guide a dynamic programming based Viterbi search
that uses lexical trees for cross-word decoding. The baseline
system, which achieved a WER of 14.0% on the standard 5K
WSJ0 task, required 4 xRT for training and 15 xRT for
decoding on an 800 MHz Pentium processor. The design and
analysis of this system is described in a companion paper [1].

The experimental paradigm to evaluate the influence of
front end specific tuning consisted of two sets of experiments.
First, all test conditions defined in the ALV evaluation at 8 kHz
were repeated for each of the two front ends. For the MFA
front end, a binary program was provided by the MFA
consortium that included a bug fix for the version submitted to
the original evaluation. This bug fix did not affect the overall
performance. The QIO consortium provided feature files for all
evaluation conditions.

All the system parameters for the first set of experiments
were set to the conditions used in the ALV evaluation. The
second set of experiments involved individually tuning the
system parameters until optimal performance was obtained.
The tuning process was executed on the short development test
set using Training Set 1 at 8 kHz. These conditions represent
matched conditions — clean data recorded using a Sennheiser
microphone.

3.   System Descriptions
The QIO front end [2] is an MFCC-based front end

Fifteen coefficients are used as the base feature s
LDA-derived RASTA filters bandpass filter the tempora
trajectories of the log mel-frequency filter bank energies
compensate for the slowly varying convolutional nois
introduced due to the channel and the microphone mismat
On-line cepstral mean subtraction and variance normalizat
are employed to handle the residual convolutional noise. Ea
of these channel normalization techniques is known to impro
performance independently. A multilayer perceptron (MLP
based VAD eliminates non-speech segments, thereby reduc
insertion errors. The input to the MLP consists of three fram
of features. The MLP is trained on multiple database
representing both clean as well as noisy conditions.

Similar to the QIO front end, the MFA front end [4] is also
an MFCC-based front end. A 13-dimensional feature vect
consists of 12 cepstral coefficients plus log energy. MF
incorporates a two-step noise reduction scheme based on m
warped Wiener filters to suppress the additive noise. This fro
end also incorporates an additional waveform SNR weighti
block to enhance the SNR of the de-noised signal using
Teager energy operator. A least mean square error based b
equalization is aimed at reducing the mismatch due to chan
and microphone variations.

The MFA front end also uses VAD logic. Their approach i
based on three measures. The first measure uses the long
acceleration of the energy (computed across the ent
spectrum). The second measure uses the acceleration of en
measured over a group of sub-bands of the spectrum likely
contain the fundamental pitch (second, third and four
filterbank outputs on the mel scale). The third measure uses
the variance of the linear-frequency Wiener filter coefficien
over the entire frequency band.

The ETSI standard split-vector quantization compressi
algorithm and framing algorithm are implemented in both th
front ends [4]. The bit-stream is decoded, error-detected, err
corrected, and decompressed to form the final features at
back-end server. The delta and acceleration coefficients
computed from the base features at the back end, rather t
being transmitted over the channel.

4.   Results and Analysis
All experiments described below were analyzed using t
MAPSSWE significance test [9] with a significance value o
0.1%. The goal for the ALV evaluation was to achieve a 25
relative improvement in word error rate (WER) compared
the MFCC WI007 front end.

4.1   Front End-Specific Parameter Tuning

There are four classes of parameters that are most relevan
the tuning performed for this evaluation. Two of these relate
language model and acoustic scores. The language model s
factor controls the relative weight of the language mod
probabilities compared to the acoustic model probabilities. T
word insertion penalty is applied to every word hypothesis a
is used to balance insertion and deletion errors. The langua
model scale factor typically ranges from 5 (for Resourc
Management) and 20 (for WSJ). The word insertion pena
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usually ranges from -10 (Res. Man.) to +10 (WSJ).
The second class of parameters, which have perhaps the

most significant impact on performance, relate to the state
tying process. The number of tied states can normally be
adjusted to improve performance. This parameter balances
sparsity and generalization of the data in the decision tree state
tying process. We typically reduce the number of states by an
order of magnitude. We can also control the degree to which
states are merged or split by adjusting parameters related to the
likelihood of the state.

In Tables 2 and 3, we show the difference in performance
between the baseline system and the tuned system for the QIO
and MFA front ends respectively. The tuning process is
described in more detail in [5]. Parameter tuning was
performed on the matched training condition at 8 kHz (TS1)
using the 330-utterance short development test set. The beam
pruning parameters (state, model and word) were opened
during the tuning process to reduce the influence of pruning.

As shown in Tables 2 and 3, parameter tuning resulted in
small overall improvement — about 1% absolute and 8
relative. The amount of improvement was about the same
both systems — 7.5% relative for QIO and 9.4% relative fo
MFA. Hence, the ranking of the systems remained the same

4.2   Detailed Analysis

A more detailed analysis of the results for tuning are shown
Table 4. The pruning beams were scaled back to the valu
used in the ALV baseline system: 200 (state), 150 (model), a
150 (word). It is observed that the overall relative ranking o
the two competitive front ends is not influenced by the tunin
process. The average performance of the MFA front e
without tuning is better than QIO by 9.6% relative. Fron
end-specific tuning resulted in an increase in the relati
performance gap between the two front ends from 9.6%
15.8%. While the average performance of the MFA front en
remained relatively constant (34.7% to 34.1%), the avera
performance of the QIO front end dropped by 5.5% relativ
(38.4% to 40.5%). One possible reason for this drop can
attributed to overfitting of the system parameters on th
specific database (matched conditions: TS1 and short dev
set 1) employed for the tuning process.

Significance tests on the 14 test conditions for Trainin
Set 1 (without tuning) showed that the performance of th
MFA front end was significantly better than the QIO front en
performance on all 14 test conditions. However, on Trainin
Set 2, the MFA front end was significantly better for only Tes
Sets 5 and 14. Training Set 2 is representative of all noi
conditions and includes microphone mismatches. Hence,
TS1 is a good measure for front-end robustness, and perh
more telling than the matched conditions (TS2). For the AL
evaluations, WERs on the two training sets were weight
equally, thereby decreasing the gap between the two front en

In Table 5, we focus on performance for a microphon
mismatch training condition. Training Set 1 consisted of clea
data recorded with a Sennheiser microphone. Test Set 1 a
represents clean data recorded through the same microph
Test Set 8 represents a mismatched condition since it cons

Table 4:A detailed analysis of the performance comparison after system-specific tuning.

FE TS Tun. Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Set 11 Set 12 Set 13 Set 14 Avr.

QIO 1 no 17.1 27.2 44.1 47.0 43.1 48.9 44.6 27.5 39.5 49.8 54.9 55.9 52.1 52.0 43

QIO 2 no 20.9 22.1 32.8 37.4 35.4 33.6 35.2 24.2 27.4 37.5 42.7 42.2 37.3 41.1 33

Average QIO Performance without tuning 38.4

QIO 1 yes 19.1 31.7 46.8 49.2 45.7 51.1 46.6 30.0 42.2 52.9 55.5 58.3 54.8 55.8 4

QIO 2 yes 22.5 23.8 33.6 38.1 36.4 36.2 37.7 25.0 29.5 39.1 44.5 45.0 40.5 41.8 3

Average QIO Performance with tuning 40.5

MFA 1 no 14.5 22.1 37.0 43.2 36.6 43.3 38.2 24.3 29.8 43.4 50.6 48.7 48.6 44.9 37

MFA 2 no 18.1 20.6 30.9 36.8 31.6 33.8 31.7 24.3 24.8 34.7 43.3 40.3 38.1 35.7 31

Average MFA Performance without tuning 34.7

MFA 1 yes 14.4 21.5 36.8 42.1 36.5 44.1 36.4 23.3 30.2 43.0 50.2 48.9 47.0 43.6 37

MFA 2 yes 16.8 20.7 29.7 36.0 31.0 33.3 32.0 22.5 24.6 34.1 42.3 39.4 37.1 36.1 31

Average MFA Performance with tuning 34.1

Table 2:A comparison of the optimized system parameters to
the baseline system parameters for the QIO front end. Beam
pruning parameters were set to 300 (state), 250 (model), and
250 (word).

Table 3:A comparison of the optimized system parameters to
the baseline system parameters for the MFA front end.

QIO
Num
states

State Tying Thresh. LM
Sc

Wd
Pen

WER
(%)Spl Mer Occ

Base 3209 165 165 840 18 10 16.1

Tuned 3512 125 125 750 20 10 14.9

MFA
Num
states

State Tying Thresh. LM
Sc

Wd
Pen

WER
(%)Spl Mer Occ

B-line 3208 165 165 840 18 10 13.8

Tuned 4254 100 100 600 18 05 12.5
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of clean data recorded through the second microphone. Though
both front ends degraded significantly due to microphone
mismatch, this degradation is less severe than the MFCC-based
baseline system. The baseline system did not employ any
channel normalization techniques such as cepstral mean
subtraction.

As shown to the right in Figures 1 and 2, the presence of
additive noise resulted in a significant degradation in
performance for both the QIO and MFA front ends. The bold
labels in these figures represent differences which are
statistically significant. This trend is similar to the tend
observed on the Aurora MFCC front end based baseline
system [1] though the degradations are less severe. The
degradation is also less severe when the systems are exposed to
noise during training. Performance on the same noisy test sets
is much better when training on TS2 because TS2 contains
examples of all noise types.

5.   Summary
In this paper, we have presented a detailed analysis of the
results of the Aurora Large Vocabulary evaluation. We have
shown that front end specific parameter tuning did not
appreciably change the results of the evaluation. The MFA
front end still outperformed the QIO front end. In fact, the gap
in performance increased slightly after each system was
optimized.

It was also shown that mismatched microphones and
additive noise significantly degrade recognition performance.
Both the QIO and MFA front ends did not degrade as
dramatically as the baseline system. In fact, both front ends
met the goals set forth in the evaluation — a 25% improvement
in performance over the baseline system. Nevertheless, it is
clear that there is ample room for new research into ways to
make such front ends more robust to unknown noise and
microphone mismatch conditions.
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Figure 1:A comparison of the WER for the QIO front end for
six noisy conditions.
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Figure 2:A comparison of the WER for the MFA front end.
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Table 5: A performance comparison for a mismatched
microphone condition. Although all the three front ends suffer
from significant degradation, the severity is reduced for both
the advanced front ends compared to the baseline front end.

Train
Set

WI007
Baseline

QIO MFA

Set 1
(Sen.
Mic.)

Set 8
(Sec.
Mic.)

Set 1
(Sen.
Mic.)

Set 8
(Sec.
Mic.)

Set 1
(Sen.
Mic.)

Set 8
(Sec.
Mic.)

1 15.4% 36.6% 17.1% 27.5% 14.5% 24.3%
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