
Dialog Systems for Automotive Environments

 Julie A. Baca, Feng Zheng, Hualin Gao Joseph Picone

 Center for Advanced Vehicular Systems Institute for Signal and Information Processing
 Mississippi State University Mississippi State University
baca@cs.msstate.edu, {zheng,gao}@isip.misstate.edu picone@isip.msstate.edu

Abstract

The Center for Advanced Vehicular Systems (CAVS), located
at Mississippi State University (MSU), is collaborating with
regional automotive manufacturers such as Nissan, to advance
telematics research. This paper describes work resulting from a
research initiative to investigate the use of dialog systems in
automotive environments, which includes in-vehicle driver as
well as automotive manufacturing environments. We present
recent results of an effort to develop an in-vehicle dialog
prototype, preliminary to building a dialog system to assist in
workforce training in automotive manufacturing. The overall
system design is presented with focus on development of the
semantic information needed by the natural language and
dialog management modules. We describe data collection and
analysis through which the information was derived. Through
this process we reduced the parsing error rate by over 20% and
system understanding errors to 3%.

1. Introduction

The Center for Advanced Vehicular Systems (CAVS), located
at Mississippi State University (MSU), is collaborating with
regional automotive manufacturers such as Nissan, to advance
telematics research. Many applications within this domain
require speech and other related human interface technologies.
While speech-based in-vehicle driver assistance has received
the most attention in the media, the automotive manufacturing
environment presents many challenging situations for which
speech interfaces can provide unique solutions. CAVS,
working closely with Nissan, is currently investigating all
aspects of the manufacturing environment, including
particularly the need to train workers to perform optimally in
this environment.

In this paper, we describe the development of a dialog
system for in-vehicle navigation which is part of a larger
initiative at CAVS in the area of workforce training. There are
several commonalities between the in-vehicle and
manufacturing tasks, including the need for hands and eyes to
be occupied with other tasks, the necessity of operating in a
noisy environment, and the need for real-time system
response. The in-vehicle task, however, is more clearly defined
and understood, making it an attractive start-up application for
acquiring a base of knowledge and building an infrastructure
for dialog systems development that could be applied to the
workforce training or other domains. In addition, we plan to
provide the driver assistance capability via telephone to the
local community since no such service exists in this region,
and this represents an attractive framework in which we can
study dialect, accent, and other known problems with
contemporary speech to text systems.

Speech-enabled navigational interfaces have been studied
in a variety of applications for the last decade [1,2]. While
some provide assistance for pedestrians , speech is particularly

appropriate for the driver assistance task, where the user’s
hands, eyes and cognitive state, are more fully occupied.
Interfaces for this task can be characterized as giving spoken
directions in response to a spoken user request for help in
navigating a particular geographical area. Interactions with
such systems, however, remain highly constrained by the
limitations of the speech understanding process as well as the
human-computer interface. The current state-of-the-art for
such interfaces offers users a restricted, inflexible interaction
at best. Users must adhere to a strict protocol with any
variations causing system response to degrade significantly.

True dialog systems that allow users to engage in a
natural conversational interaction have yet to be realized for
the driver assistance task. Many fundamental problems must
be solved to achieve this goal. In particular, this task heightens
the need for real-time, accurate responses to complex queries
in a noisy environment. This paper presents research exploring
these issues in a test-bed developed within CAVS. Challenges
in the development of an in-vehicle dialog system are
presented and results of current efforts analyzed. Issues to be
addressed in future work conducted in both this project and
related projects for workforce training are also identified.

2. Dialog System Development

Our prototype dialog system allows users to speak queries
using natural unconstrained speech to obtain information
needed to navigate the Mississippi State University campus
and the surrounding town (Starkville, Mississippi). Queries
can be tightly focused: “I’m at the Post Office. I want to go to
the cafeteria downtown on Main Street,” or more open:
“What’s the best place to stay near campus?” The system
employs speech recognition, natural language understanding,
and user-centered dialog control to resolve queries.

Flexible dialog management, focused on the user’s goals,
is critical to understanding and properly responding for such
an application. For example, the first query, “I’m at the Post
Office. Tell me how to get to the cafeteria downtown on Main
Street” requires the system to know or determine to which
Post Office the user is referring, the one in town or on campus.

Related efforts have discussed issues in the development
of in-vehicle dialog research prototypes [3-5]. As noted in [6],
language model and grammar development remain costly
endeavors for any dialog system, requiring either handcrafting
or automatically learning from large amounts of training data.
The DARPA Communicator program, however, has facilitated
overall system design and development by providing a
standard architecture for building dialog systems, thus
enabling the exchange of components and evaluation of results
across sites [7]. Our prototype system uses this Hub
architecture, shown in Figure 1, with base components derived
from other publicly available system modules [8,9]. A hub and
a set of servers comprise the Communicator architecture. The
hub functions as a central router through which the servers

pass messages to communicate with each other. The hub
accepts these messages from the servers in a specific format.

This enforces a standard protocol for all servers to
communicate, thus encouraging a “plug-and-play” approach to
dialog system development. Designing the server modules to
follow the message-passing protocol improves modularity. A
description of each of the major components of our system
follows.

2.1. Audio Server

The audio server controls the hardware which samples and
digitizes acoustic signals from the microphone. It accepts these
incoming speech signals and passes the result via the hub to
the automatic speech recognition (ASR) module. It also sends
synthesized speech through the hub to the audio device. Our
system uses the MIT/MITRE audio server [7] provided to
DARPA Communicator participants.

2.2. Speech Recognition

The ASR module uses a publicly available recognition
toolkit [9] that implements a standard HMM-based speaker
independent continuous speech recognition system. It supports
cross-word context-dependent phonetic models and employs a
generalized hierarchical time-synchronous Viterbi beam
search for decoding. This produces a single most likely word
sequence that is passed through the hub to the natural
language understanding (NLU) module.

The recognizer processes acoustic samples received from
the audio server. For our application, we began with acoustic
models trained on Wall Street Journal. We chose this set
initially because it is a medium size general-purpose set of
acoustic models upon which we could build. We then
collected minimal training data for our application and
retrained these models.

To create the language model for our application, we first
collected over 2,000 business and other special names specific
to our application. We then used the SRI Language Modeling
Toolkit [10] to interpolate the new domain-specific words into
the WSJ language model (LM). We first trained a class-based
language model for the new words using phrase patterns
observed in collecting a pilot corpus described in Section 3.
We then expanded the class-based LM to the word-based LM,
where the probabilities are recomputed by:

Unigram: () () ()iiii CpCWpWp ∗= (1)

Bigram: () () ()11 −∗=− iii CiCpCWpiWiWp (2)

Next we interpolated the word-based LM with the
original WSJ LM, adjusting the weight of the interpolation to
ensure the perplexity of the new LM was close to the original
LM. The resultant vocabulary increased from 4988 words to
7132 words, while the perplexity of the LM on the pilot
corpus increased by 70. Further details of the pilot corpus are
given in Section 3.

The ASR module produces the most likely word sequence
and sends this string via the hub to the NLU module,
described in the next section.

2.3. Natural Language Understanding

The NLU module uses a publicly available semantic case
frame parser [8]. It employs a semantic grammar consisting of
case frames with named slots. A context free grammar (CFG)
specifies the word sequences for each slot. The grammars are
compiled into Recursive Transition Networks, against which
the recognizer output is matched to fill the slots. A semantic
parse tree is generated for each slot with the slot name as root.
A simple example frame for a request for driving information
is shown below

FRAME: Drive
 [route]
 [distance]

The first slot in this frame, [route], allows asking for directions
along a specific route, while the second slot, [distance], allows
asking for the distance from one location to another. A subset
of CFG rules for the route slot are shown below:

[route]
 (*IWANT *[go_verb] [arriveloc])
IWANT
 (I want *to) (I would *like *to) (I will) (I need *to)
 [go_verb]
 (go) (drive *to) (get) (reach)
[arriveloc]
 [*to [placename] [cityname]]

This type of grammar is advantageous for dialog systems
because it can accept the ungrammatical inputs likely to occur
in spontaneous speech. For example, the rules shown above
would accept the input, “I would like…I.. need to go to the
Post Office on campus.” This flexibility reduces the need for
users to adhere to strict syntactic correctness in their requests.

As previously discussed, grammar and language model
development are highly domain specific, making these costly
efforts for dialog system development. The semantic grammar
supplied with the parser toolkit was developed for a general
purpose travel domain; thus, development of frames and slots
specific to our application was required. Our current semantic
grammar consists of approximately 500 rules and over 2000
words. It was developed, along with the language model, from
a corpus of 276 sentences spontaneously entered by users over
a series of three pilot tests, described more fully in Section 3.

Once parsing is complete, the NLU module sends a list of
possible sentence parses via the hub to the Dialog Manager to
determine meaning and resolve the query. The semantic
frames defined for the parser are integral to this resolution.

Figure 1: The DARPA Communicator Architecture

Semantic frame development as well as the Dialog Manager
structure are described in the following section.

2.4. Dialog Manager

The Dialog Manager (DM) determines the nature of the
interaction between the user and system. First, it initiates the
dialog, prompting the user for an initial query. The user speaks
a request that is received by the recognition module, and
parsed by the NLU module. The NLU module then passes a
list of possible sentence parses to the DM, which selects the
best possible parse, based on the scoring of the slots, and maps
this to its own internal set of frames. It then merges this result
with a set of context frames it maintains and determines what
action to take in response. If there is no missing or conflicting
information, the DM forms a database query, obtains the result
from the database, and passes it to the NL module for output.
Otherwise, it asks the user to clarify missing or conflicting
data and attempts again to resolve the request.

Our DM was derived from the toolkit provided in [8]. It
follows a declarative design which means that, similar to the
NLU module, the bulk of the development effort lies in the
construction of domain-specific frames, forms, and grammars.
Modifications to the DM code base consisted primarily of
those needed to process domain-specific information. This
approach offers many advantages, in particular, a reduction in
the complexity of the DM code base. Nonetheless, design of
the semantic frames can critically affect system performance.
Using the fewest frames and slots provides efficiency but does
not yield a system robust to unexpected input. Conversely,
using too many frames and slots can degenerate to keyword
spotting. Finding the proper balance between these two
extremes requires careful experimentation and analysis.

Our application provides both general-purpose
information to queries such as “Is there a hiking trail here?” as
well as information specific to drivers, e.g., “Can I drive to the
coliseum from the drill field?” We began with a single Drive
frame with multiple slots to represent all types of queries a
user might ask about driving in a particular area and a single
Info frame with multiple slots for general information. The
relative simplicity of the driving task warranted the initial
choice of a single frame with carefully selected slots, subslots
and associated CFG’s. Analysis of the pilot corpus, however,
indicated the single Drive frame did not provide sufficient
robustness to unexpected input. We replaced the single frame
with 9 separate frames, each related to different types of
queries a driver might pose. Example frames and the
associated queries the frames can handle are shown in Table 1.

To summarize, the DM controls the interaction of the user
with the system, determining what data the user requires,
obtaining the data, and finally presenting it to the user. Once
the DM has determined the data needed by the user, it must
obtain this data via the hub from the application back end.

2.5. Application Back End

Our application back end houses a database storing
information about the MSU/Starkville area. Initially we used
an Internet map routing program to obtain the data and store it
in a local relational database. We used this as an interim tool
only, however, in order to focus more effort on developing
other system modules. Though expedient, its coverage of the
campus and local area were not sufficient. We have since

incorporated a Geographic Information System (GIS) module,
which stores data captured from a global positioning system
(GPS). The GIS provides the route information, which is then
stored in the local database. We are incorporating real-time
GPS data capture in the next release of the system.

3. Pilot Experiments

To obtain the domain-specific data needed to develop the
semantic grammar and language model, we conducted a series
of three pilot experiments, during which users were asked to
spontaneously enter requests for information about the
university campus and surrounding town. Each of the three
pilot experiments consisted of two phases, 1) initial data
gathering and system testing, followed by 2) retesting the
system on the initial data after enhancements were made to the
grammar and language model. Initial efforts focused on
reducing the rate of out of vocabulary (OOV) utterances and
parsing errors for the NLP module. The initial lexicon
contained over 2000 words. The initial semantic grammar
contained a Drive frame with two slots, each expandable to
multiple subslots as shown:

FRAME Drive:
 [Depart_Loc]
 [Arrive_Loc]

each of which can expand to [City_name],
[State],[Place_Type], [Place_Name], [Address]. Each of these
subslots can be further expanded, for example, [Place_Name]
can expand to [(Restaurant_Name)], [(Hotel_Name)],
[(Campus_Name)], [(Building_Name)].

After each test, new domain-specific words occurring in

the pilot data were added to the lexicon. In addition, new slots
and CFG rules were added to the Drive frame to increase the
robustness of the parser. For example, to handle a request
such as “What’s the best way to get to the courthouse?” a new
slot and associated CFG’s were added. The slot and an
excerpted subset of the rules added include:

[query_best]
 (WHATS * THE * SPEC_WAY WAY)
 SPEC_WAY
 (best) (shortest) (better)(nearest)(closest)(fastest)
 WHATS
 (what’s)(what is)(where *)(which *is)(which *are)

Drive_Direction: “How can I get from Lee Boulevard to
Kroger?”

Drive_Address: “Where is the bakery located?”

Drive_Distance: “How far is China Garden from here?”

Drive_Turn: “I’m on the corner of Nash and Route 82.
What’s the next turn to get to campus?”

Drive_Quality: “Find me the most scenic route from LJ’s to
Scott Field.”

Drive_Intersect: “Does Lynn Lane intersect Academy Road?”

Drive_Special: “Can I bypass Highway 12 to get to Bryan
Field?”

Table 1: Example frames and the associated queries.

The results for each of the three pilot experiments are given in
Table 2:

After completing the pilot experiments, two overall
system tests on the entire corpus were conducted for
refinement. Results of these tests are given in Table 3:

 Prior to the first test, the single Drive frame was
implemented. As described in Section 2.5, analyses of the first
overall test results indicated the number and type of semantic
frames should be increased to reduce the parsing error rate.
Even with multiple slots, subslots and carefully crafted
associated CFG rules, the single Drive frame did not provide
sufficient robustness. The addition of the new semantic frames
reduced the parsing error rate from 43% in the first overall test
to 6% in the second overall test as shown in Table 3.

We also measured DM performance in the overall tests.
Changes to the DM code base to include the new semantic
frames reduced the system understanding errors from 49% to
3%. The query, “Is Dean’s still on University Drive?”
provides an example of the type of error the DM still could not
resolve even after including the new frames. The correct
answer, “Dean’s is located at 134 E. Amite St.” may not be
given. “Dean’s” is a proper noun represented in the grammar
as both a place of business in town and the location of the
academic dean for a college. The DM resolves such
ambiguities by examining context of place, i.e., town or
campus. If the previous context is campus, “Dean’s” is
interpreted as an academic dean rather than a place of
business. If no previous context exists, any address given in
the query is used to establish context. In this case, “University
Drive” resolves to campus context. Such issues must be
addressed and are problematic since they affect more basic
issues of system usability, e.g., the level of clarification
required by the user as well as the level of user initiative.

4. Conclusions and Future Work

We undertook the in-vehicle driver assistance project to
explore the challenges in dialog system development and build
a capability for further research in the workforce training and
other related domains. For the ASR module of our final
prototype, we anticipate a real-time system with a vocabulary
of approximately 5000 words, perplexity of 50, and WER of
10%. For the NLU module, we anticipate a semantic grammar
of approximately 15 frames and a parsing error rate of less
than 10%. One interesting finding of our work concerned

verification of the cost incurred by the domain-specific
development required for dialog systems. An area of future
research will explore methods for automating this process
using statistical techniques. Advances in this area could
greatly reduce development time. We intend to investigate this
as we transition to the workforce training domain.

We are also implementing several enhancements to the
in-vehicle system. As noted, we have incorporated a GIS
database to contain the routing information and are developing
the capability for real-time GPS data capture. To enhance the
recognition module, we are collecting further data to refine the
acoustic models and the language model. We plan to analyze
this data to improve the robustness of the NLP and the DM
modules as well. Our current prototype provides information
in NL text output only. Our final prototype will integrate NL
generation with speech output. Finally, we intend to make the
current system available to the local community via telephone
access, which would enable drivers to obtain assistance in
navigating the local area through cellular telephones.

5. References

1. Loomis et al., “Personal Guidance System for the
Visually Impaired,” ASSETS ’94, ACM Conference on
Assistive Technologies, Los Angeles, CA, USA,
November 1994.

2. J.R. Davis and C. Schmandt, “The Back Seat Driver: Real
Time Spoken Driving Instructions,” First Vehicle
Navigation and Information Systems Conference,
Toronto, Ontario, Canada, September 1989.

3. D. Buhler, W. Minker, J. Haubler, S. Kruger, “Flexible
Multimodal Human-Machine Interaction in Mobile
Environments,” Proceedings ICSLP, Denver, CO, USA,
September 2002.

4. B. Pellom, W. Ward, J. Hansen, K. Hacioglu, and J.
Zhang, X. Yu, and S. Pradhan, “University of Colorado
Dialog Systems for Travel and Navigation,” Proceedings
of the 2001 Human Language Technology Conference
(HLT-2001), San Diego, CA, USA, March 2001.

5. P. Geutner, M. Denecke, U. Meier, M. Westphal, and A.
Waibel, “Conversational Speech Systems for On-Board
Car Navigation and Assistance,” Proceedings ICSLP,
Sydney, Australia, December 1998.

6. S. Young, “Talking to Machines (Statistically Speaking)”
Proceedings ICSLP, Denver, CO, USA, pp. 9-16,
September 2002.

7. “DARPA Communicator,” http://fofoca.mitre.org/, The
MITRE Corporation, 2003.

8. B. Pellom, W. Ward, S. Pradhan, “The CU
Communicator: An Architecture for Dialogue Systems,”
Proceedings ICSLP, Beijing China, November 2000.

9. J. Picone, et al., “A Public Domain C++ Speech
Recognition Toolkit,”, ISIP, Mississippi State University,
Mississippi State, MS, USA, March 2003 (http://www
.isip.msstate.edu/projects/speech).

10. SRILM – The SRI Language Modeling Toolkit:
http://www.speech.sri.com/projects/srilm.

Vers. 1.0 2.0 3.0
Test Pre Post Pre Post Pre Post
OOV 25% 0% 36% 0% 4% 0%
Parser 80% 3% 60% 5% 46% 11%

Table 2: A summary of the results from three pilot studies
to refine the NLU system.

Test No.
NLP Parser
Error Rate

Dialog Manager
Error Rate

1 43% 49%
2 6% 3%

Table 3. The results from two pilot studies on the overall
system performance.

