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Abstract 

The Center for Advanced Vehicular Systems (CAVS), located 
at Mississippi State University (MSU), is collaborating with 
regional automotive manufacturers such as Nissan, to advance 
telematics research. This paper describes work resulting from a 
research initiative to investigate the use of dialog systems in 
automotive environments, which  includes in-vehicle driver as 
well as automotive manufacturing environments.  We present 
recent results of an effort to develop an in-vehicle dialog 
prototype, preliminary to building a dialog system to assist in 
workforce training in automotive manufacturing.  The overall 
system design is presented with focus on development of the 
semantic information needed by the natural language and 
dialog management modules. We describe data collection and 
analysis through which the information was derived.  Through 
this process we reduced the parsing error rate by over 20% and 
system understanding errors to 3%.        

1. Introduction 

The Center for Advanced Vehicular Systems (CAVS), located 
at Mississippi State University (MSU), is collaborating with 
regional automotive manufacturers such as Nissan, to advance 
telematics research. Many applications within this domain 
require speech and other related human interface technologies. 
While speech-based in-vehicle driver assistance has received 
the most attention in the media, the automotive manufacturing 
environment presents many challenging situations for which 
speech interfaces can provide unique solutions. CAVS, 
working closely with Nissan, is currently investigating all 
aspects of the manufacturing environment, including 
particularly the need to train workers to perform optimally in 
this environment. 

In this paper, we describe the development of a dialog 
system for in-vehicle navigation which is part of a larger 
initiative at CAVS in the area of workforce training. There are 
several commonalities between the in-vehicle and 
manufacturing tasks, including the need for hands and eyes to 
be occupied with other tasks, the necessity of operating in a 
noisy environment, and the need for real-time system 
response. The in-vehicle task, however, is more clearly defined 
and understood, making it an attractive start-up application for 
acquiring a base of knowledge and building an infrastructure 
for dialog systems development that could be applied to the 
workforce training or other domains. In addition, we plan to 
provide the driver assistance capability via telephone to the 
local community since no such service exists in this region, 
and this represents an attractive framework in which we can 
study dialect, accent, and other known problems with 
contemporary speech to text systems. 

Speech-enabled navigational interfaces have been studied 
in a variety of applications for the last decade [1,2]. While 
some provide assistance for pedestrians , speech is particularly 

appropriate for the driver assistance task, where the user’s 
hands, eyes and cognitive state, are more fully occupied. 
Interfaces for this task can be characterized as giving spoken 
directions in response to a spoken user request for help in 
navigating a particular geographical area. Interactions with 
such systems, however, remain highly constrained by the 
limitations of the speech understanding process as well as the 
human-computer interface. The current state-of-the-art for 
such interfaces offers users a restricted, inflexible interaction 
at best. Users must adhere to a strict protocol with any 
variations causing system response to degrade significantly.  

True dialog systems that allow users to engage in a 
natural conversational interaction have yet to be realized for 
the driver assistance task. Many fundamental problems must 
be solved to achieve this goal. In particular, this task heightens 
the need for real-time, accurate responses to complex queries 
in a noisy environment. This paper presents research exploring 
these issues in a test-bed developed within CAVS. Challenges 
in the development of an in-vehicle dialog system are 
presented and results of current efforts analyzed. Issues to be 
addressed in future work conducted in both this project and 
related projects for workforce training are also identified. 

2. Dialog System Development 

Our prototype dialog system allows users to speak queries 
using natural unconstrained speech to obtain information 
needed to navigate the Mississippi State University campus 
and the surrounding town (Starkville, Mississippi). Queries 
can be tightly focused: “I’m at the Post Office. I want to go to 
the cafeteria downtown on Main Street,” or more open: 
“What’s the best place to stay near campus?” The system 
employs speech recognition, natural language understanding, 
and user-centered dialog control to resolve queries. 

Flexible dialog management, focused on the user’s goals, 
is critical to understanding and properly responding for such 
an application. For example, the first query, “I’m at the Post 
Office. Tell me how to get to the cafeteria downtown on Main 
Street” requires the system to know or determine to which 
Post Office the user is referring, the one in town or on campus.  

Related efforts have discussed issues in the development 
of in-vehicle dialog research prototypes [3-5]. As noted in [6], 
language model and grammar development remain costly 
endeavors for any dialog system, requiring either handcrafting 
or automatically learning from large amounts of training data. 
The DARPA Communicator program, however, has facilitated 
overall system design and development by providing a 
standard architecture for building dialog systems, thus 
enabling the exchange of components and evaluation of results 
across sites [7]. Our prototype system uses this Hub 
architecture, shown in Figure 1, with base components derived 
from other publicly available system modules [8,9]. A hub and 
a set of servers comprise the Communicator architecture. The 
hub functions as a central router through which the servers 



pass messages to communicate with each other. The hub 
accepts these messages from the servers in a specific format. 

This enforces a standard protocol for all servers to 
communicate, thus encouraging a “plug-and-play” approach to 
dialog system development. Designing the server modules to 
follow the message-passing protocol improves modularity. A 
description of each of the major components of our system 
follows. 

2.1. Audio Server 

The audio server controls the hardware which samples and 
digitizes acoustic signals from the microphone. It accepts these 
incoming speech signals and passes the result via the hub to 
the automatic speech recognition (ASR) module. It also sends 
synthesized speech through the hub to the audio device. Our 
system uses the MIT/MITRE audio server [7] provided to 
DARPA Communicator participants. 

2.2. Speech Recognition 

The ASR module uses a publicly available recognition 
toolkit [9] that implements a standard HMM-based speaker 
independent continuous speech recognition system. It supports 
cross-word context-dependent phonetic models and employs a 
generalized hierarchical time-synchronous Viterbi beam 
search for decoding. This produces a single most likely word 
sequence that is passed through the hub to the natural 
language understanding (NLU) module. 

The recognizer processes acoustic samples received from 
the audio server. For our application, we began with acoustic 
models trained on Wall Street Journal. We chose this set 
initially because it is a medium size general-purpose set of 
acoustic models upon which we could build. We then 
collected minimal training data for our application and 
retrained these models. 

To create the language model for our application, we first 
collected over 2,000 business and other special names specific 
to our application. We then used the SRI Language Modeling 
Toolkit [10] to interpolate the new domain-specific words into 
the WSJ language model (LM). We first trained a class-based 
language model for the new words using phrase patterns 
observed in collecting a pilot corpus described in Section 3. 
We then expanded the class-based LM to the word-based LM, 
where the probabilities are recomputed by: 

Unigram: ( ) ( ) ( )iiii CpCWpWp ∗=    (1) 

Bigram:  ( ) ( ) ( )11 −∗=− iii CiCpCWpiWiWp  (2) 

Next we interpolated the word-based LM with the 
original WSJ LM, adjusting the weight of the interpolation to 
ensure the perplexity of the new LM was close to the original 
LM. The resultant vocabulary increased from 4988 words to 
7132 words, while the perplexity of the LM on the pilot 
corpus increased by 70. Further details of the pilot corpus are 
given in Section 3. 

The ASR module produces the most likely word sequence 
and sends this string via the hub to the NLU module, 
described in the next section. 

2.3. Natural Language Understanding  

The NLU module uses a publicly available semantic case 
frame parser [8]. It employs a semantic grammar consisting of 
case frames with named slots. A context free grammar (CFG) 
specifies the word sequences for each slot. The grammars are 
compiled into Recursive Transition Networks, against which 
the recognizer output is matched to fill the slots. A semantic 
parse tree is generated for each slot with the slot name as root. 
A simple example frame for a request for driving information 
is shown below 

FRAME: Drive 
     [route] 
     [distance] 

The first slot in this frame, [route], allows asking for directions 
along a specific route, while the second slot, [distance], allows 
asking for the distance from one location to another. A subset 
of CFG rules for the route slot are shown below: 

[route] 
     (*IWANT *[go_verb]  [arriveloc]) 
IWANT 
    (I want *to) (I would *like *to) (I will) (I need *to) 
 [go_verb]   
     (go) (drive *to) (get) (reach) 
[arriveloc]   
     [*to [placename] [cityname]] 

This type of grammar is advantageous for dialog systems 
because it can accept the ungrammatical inputs likely to occur 
in spontaneous speech. For example, the rules shown above 
would accept the input, “I would like…I.. need to go to the 
Post Office on campus.” This flexibility reduces the need for 
users to adhere to strict syntactic correctness in their requests. 

As previously discussed, grammar and language model 
development are highly domain specific, making these costly 
efforts for dialog system development. The semantic grammar 
supplied with the parser toolkit was developed for a general 
purpose travel domain; thus, development of frames and slots 
specific to our application was required. Our current semantic 
grammar consists of approximately 500 rules and over 2000 
words. It was developed, along with the language model, from 
a corpus of 276 sentences spontaneously entered by users over 
a series of three pilot tests, described more fully in Section 3. 

Once parsing is complete, the NLU module sends a list of 
possible sentence parses via the hub to the Dialog Manager to 
determine meaning and resolve the query. The semantic 
frames defined for the parser are integral to this resolution. 

 
Figure 1: The DARPA Communicator Architecture 



Semantic frame development as well as the Dialog Manager 
structure are described in the following section. 

2.4. Dialog Manager 

The Dialog Manager (DM) determines the nature of the 
interaction between the user and system. First, it initiates the 
dialog, prompting the user for an initial query. The user speaks 
a request that is received by the recognition module, and 
parsed by the NLU module. The NLU module then passes a 
list of possible sentence parses to the DM, which selects the 
best possible parse, based on the scoring of the slots, and maps 
this to its own internal set of frames. It then merges this result 
with a set of context frames it maintains and determines what 
action to take in response. If there is no missing or conflicting 
information, the DM forms a database query, obtains the result 
from the database, and passes it to the NL module for output. 
Otherwise, it asks the user to clarify missing or conflicting 
data and attempts again to resolve the request. 

Our DM was derived from the toolkit provided in [8]. It 
follows a declarative design which means that, similar to the 
NLU module, the bulk of the development effort lies in the 
construction of domain-specific frames, forms, and grammars. 
Modifications to the DM code base consisted primarily of 
those needed to process domain-specific information. This 
approach offers many advantages, in particular, a reduction in 
the complexity of the DM code base. Nonetheless, design of 
the semantic frames can critically affect system performance. 
Using the fewest frames and slots provides efficiency but does 
not yield a system robust to unexpected input. Conversely, 
using too many frames and slots can degenerate to keyword 
spotting. Finding the proper balance between these two 
extremes requires careful experimentation and analysis. 

Our application provides both general-purpose 
information to queries such as “Is there a hiking trail here?” as 
well as information specific to drivers, e.g., “Can I drive to the 
coliseum from the drill field?” We began with a single Drive 
frame with multiple slots to represent all types of queries a 
user might ask about driving in a particular area and a single 
Info frame with multiple slots for general information. The 
relative simplicity of the driving task warranted the initial 
choice of a single frame with carefully selected slots, subslots 
and associated CFG’s. Analysis of the pilot corpus, however, 
indicated the single Drive frame did not provide sufficient 
robustness to unexpected input. We replaced the single frame 
with 9 separate frames, each related to different types of 
queries a driver might pose. Example frames and the 
associated queries the frames can handle are shown in Table 1. 
 
To summarize, the DM controls the interaction of the user 
with the system, determining what data the user requires, 
obtaining the data, and finally presenting it to the user. Once 
the DM has determined the data needed by the user, it must 
obtain this data via the hub from the application back end. 

2.5. Application Back End 

Our application back end houses a database storing 
information about the MSU/Starkville area. Initially we used 
an Internet map routing program to obtain the data and store it 
in a local relational database. We used this as an interim tool 
only, however, in order to focus more effort on developing 
other system modules. Though expedient, its coverage of the 
campus and local area were not sufficient. We have since 

incorporated a Geographic Information System (GIS) module, 
which stores data captured from a global positioning system 
(GPS). The GIS provides the route information, which is then 
stored in the local database. We are incorporating real-time 
GPS data capture in the next release of the system. 

3. Pilot Experiments 

To obtain the domain-specific data needed to develop the 
semantic grammar and language model, we conducted a series 
of three pilot experiments, during which users were asked to 
spontaneously enter requests for information about the 
university campus and surrounding town. Each of the three 
pilot experiments consisted of two phases, 1) initial data 
gathering and system testing, followed by 2) retesting the 
system on the initial data after enhancements were made to the 
grammar and language model. Initial efforts focused on 
reducing the rate of out of vocabulary (OOV) utterances and 
parsing errors for the NLP module. The initial lexicon 
contained over 2000 words. The initial semantic grammar 
contained a Drive frame with two slots, each expandable to 
multiple subslots as shown: 

FRAME Drive:  
    [Depart_Loc] 
    [Arrive_Loc] 

each of which can expand to [City_name], 
[State],[Place_Type], [Place_Name], [Address].  Each of these 
subslots can be further expanded, for example,  [Place_Name] 
can expand to [(Restaurant_Name)], [(Hotel_Name)], 
[(Campus_Name)], [(Building_Name)]. 

  
After each test, new domain-specific words occurring in 

the pilot data were added to the lexicon.  In addition, new slots 
and CFG rules were added to the Drive frame to increase the 
robustness of the parser.  For example, to handle a request 
such as “What’s the best way to get to the courthouse?” a new 
slot and associated CFG’s were added. The slot and an 
excerpted subset of the rules added include: 

[query_best] 
   (WHATS * THE * SPEC_WAY  WAY) 
   SPEC_WAY 
 (best) (shortest) (better)(nearest)(closest)(fastest) 
   WHATS 
 (what’s)(what is)(where *)(which *is)(which *are) 

Drive_Direction: “How can I get from Lee Boulevard to 
Kroger?” 

Drive_Address: “Where is the bakery located?” 

Drive_Distance: “How far is China Garden from here?” 

Drive_Turn: “I’m on the corner of Nash and Route 82.  
What’s the next turn to get to campus?” 

Drive_Quality: “Find me the most scenic route from LJ’s to 
Scott Field.”  

Drive_Intersect: “Does Lynn Lane intersect Academy Road?” 

Drive_Special: “Can I bypass Highway 12 to get to Bryan 
Field?” 

Table 1: Example frames and the associated queries. 



The results for each of the three pilot experiments are given in 
Table 2: 

After completing the pilot experiments, two overall 
system tests on the entire corpus were conducted for 
refinement. Results of these tests are given in Table 3: 

 Prior to the first test, the single Drive frame was 
implemented. As described in Section 2.5, analyses of the first 
overall test results indicated the number and type of semantic 
frames should be increased to reduce the parsing error rate. 
Even with multiple slots, subslots and carefully crafted 
associated CFG rules, the single Drive frame did not provide 
sufficient robustness. The addition of the new semantic frames 
reduced the parsing error rate from 43% in the first overall test 
to 6% in the second overall test as shown in Table 3. 

We also measured DM performance in the overall tests. 
Changes to the DM code base to include the new semantic 
frames reduced the system understanding errors from 49% to 
3%.  The query, “Is Dean’s still on University Drive?” 
provides an example of the type of error the DM still could not 
resolve even after including the new frames.  The correct 
answer, “Dean’s is located at 134 E. Amite St.” may not be 
given.  “Dean’s” is a proper noun represented in the grammar 
as both a place of business in town and the location of the 
academic dean for a college.  The DM resolves such 
ambiguities by examining context of place, i.e., town or 
campus. If the previous context is campus, “Dean’s” is 
interpreted as an academic dean rather than a place of 
business.  If no previous context exists, any address given in 
the query is used to establish context.  In this case, “University 
Drive” resolves to campus context.  Such issues must be 
addressed and are problematic since they affect more basic 
issues of system usability, e.g., the level of clarification 
required by the user as well as the level of user initiative. 

4. Conclusions and Future Work 

We undertook the in-vehicle driver assistance project to 
explore the challenges in dialog system development and build 
a capability for further research in the workforce training and 
other related domains. For the ASR module of our final 
prototype, we anticipate a real-time system with a vocabulary 
of approximately 5000 words, perplexity of 50, and WER of 
10%.  For the NLU module, we anticipate a semantic grammar 
of approximately 15 frames and a parsing error rate of less 
than 10%.  One interesting finding of our work concerned 

verification of the cost incurred by the domain-specific 
development required for dialog systems. An area of future 
research will explore methods for automating this process 
using statistical techniques. Advances in this area could 
greatly reduce development time. We intend to investigate this 
as we transition to the workforce training domain.  

We are also implementing several enhancements to the 
in-vehicle system. As noted, we have incorporated a GIS 
database to contain the routing information and are developing 
the capability for real-time GPS data capture. To enhance the 
recognition module, we are collecting further data to refine the 
acoustic models and the language model. We plan to analyze 
this data to improve the robustness of the NLP and the DM 
modules as well. Our current prototype provides information 
in NL text output only. Our final prototype will integrate NL 
generation with speech output. Finally, we intend to make the 
current system available to the local community via telephone 
access, which would enable drivers to obtain assistance in 
navigating the local area through cellular telephones. 
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Vers. 1.0 2.0 3.0 
Test Pre Post Pre Post Pre Post 
OOV 25% 0% 36% 0% 4% 0% 
Parser 80% 3% 60% 5% 46% 11% 

Table 2: A summary of the results from three pilot studies 
to refine the NLU system. 

Test No. 
NLP Parser 
Error Rate 

Dialog Manager 
Error Rate 

1 43% 49% 
2 6% 3% 

Table 3. The results from two pilot studies on the overall 
system performance. 


