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MOTIVATION

Acoustic Confusability: Requires reasoning under 
uncertainty!

Comparison of “aa” in “lOck”
and “iy” in “bEAt” for SWB

• Regions of overlap 
represent classification 
error

• Reduce overlap by 
introducing acoustic and 
linguistic context.



ACOUSTIC MODELS

Acoustic Models Must:
• Model the temporal progression of the speech
• Model the characteristics of the sub-word units
We would also like our models to:
• Optimally trade-off discrimination and 

representation
• Incorporate Bayesian statistics (priors)
• Make efficient use of parameters (sparsity)
• Produce confidence measures of their predictions 

for higher-level decision processes



SUPPORT VECTOR MACHINES

• Maximizes the margin 
between classes to satisfy 
SRM.

• Balances empirical risk 
and generalization.

• Training is carried out via 
quadratic optimization.

• Kernels provide the 
means for nonlinear 
classification.

• Many of the multipliers 
go to zero – yields sparse 
models.
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DRAWBACKS OF SVMS

• Uses a binary decision rule
– Can generate a distance, but on unseen data, 

this measure can be misleading
– Can produce a “probability” using sigmoid fits, 

etc. but they are inadequate
• Number of support vectors grows linearly 

with the size of the data set
• Requires the estimation of trade-off 

parameters via held-out sets



RELEVANCE VECTOR 
MACHINES

• A kernel-based learning machine

• Incorporates an automatic relevance determination 
(ARD) prior over each weight (MacKay)

• A flat (non-informative) prior over α completes 
the Bayesian specification.
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RELEVANCE VECTOR 
MACHINES

• The goal in training becomes finding:

• Estimation of the “sparsity” parameters is 
inherent in the optimization – no need for a 
held-out set!

• A closed-form solution to this maximization 
problem is not available. Rather, we 
iteratively reestimate 
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LAPLACE’S METHOD

• Fix α and estimate w (e.g. gradient descent)

• Use the Hessian to approximate the covariance of 
a Gaussian posterior of the weights centered at

• With      and     as the mean and covariance, 
respectively, of the Gaussian approximation, we 
find      by finding
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CONSTRUCTIVE TRAINING

• Central to this method is the inversion of an MxM 
hessian matrix: an O(N3) operation initially

• Initial experiments could use only 2-3 thousand vectors
• Tipping and Faul have defined a constructive approach

– Define 

– has a unique solution with respect to 

– The results give a set of rules for adding vectors to the model,
removing vectors from the model or updating parameters in the 
model

– Begin with all weights set to zero and iteratively construct an 
optimal model without evaluating the full NxN matrix.
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STATIC CLASSIFICATION

• Deterding Vowel Data: 11 vowels spoken in 
“h*d” context.

13 RVs

83 SVs

# Parameters

30%RVM: RBF Kernels

30%Separable Mixture Models

35%SVM: RBF Kernels

49%SVM: Polynomial Kernels

44%Gaussian Node Network

44%K-Nearest Neighbor

Error RateApproach



FROM STATIC CLASSIFICATION 
TO RECOGNITION

SEGMENTAL
CONVERTER
SEGMENTAL
CONVERTER

Features (Mel-Cepstra)

Segment
Information

HMM
RECOGNITION

HMM
RECOGNITION

HYBRID
DECODER
HYBRID

DECODER

N-best
List

Segmental
Features

Hypothesis



ALPHADIGIT RECOGNITION

• OGI Alphadigits: continuous, telephone 
bandwidth letters and numbers

• Reduced training set size for comparison: 10000 
training vectors per phone model.
– Results hold for sets of smaller size as well.
– Can not yet run larger sets efficiently.

• 3329 utterances using 10-best lists generated by 
the HMM decoder.

• SVM and RVM system architecture are nearly 
identical: RBF kernels with gamma = 0.5.
– SVM requires the sigmoid posterior estimate to produce 

likelihoods.



ALPHADIGIT RECOGNITION

5 mins5 days7214.8%RVM
1.5 hours3 hours99415.5%SVM

Testing 
Time

Training 
Time

Avg. # 
Parameters

Error
Rate

Approach

• RVMs yield a large reduction in the parameter 
count while attaining superior performance.

• Computational costs mainly in training for RVMs 
but is still prohibitive for larger sets.

• SVM performance on full training set is 11.0%.



CONCLUSIONS

• Application of sparse Bayesian methods to 
speech recognition.
– Uses automatic relevance determination to 

eliminate irrelevant input vectors: Applications 
in maximum likelihood feature extraction?

• State-of-the-art performance in extremely 
sparse models.
– Uses an order of magnitude fewer parameters 

than SVMs: Decreased evaluation time.
– Requires several orders of magnitude longer to 

train: Need more efficient training routines that 
can handle continuous speech corpora.



CURRENT WORK

• Frame-level classification
• Convergence properties 

and efficient training 
methods are critical

• A “chunking” approach is 
in development
– Apply the algorithm to 

small subsets of the basis 
functions

– Combine results from each 
subset to reach a full 
solution

– Optimality?

HMMs with
RVM Emission
Distributions

RVM(ot) RVM(ot)

E-Step
Accumulation

E-Step
Accumulation

M-Step
RVM Training

M-Step
RVM Training

Iterative
Parameter
Estimation
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