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ABSTRACT

In this paper, we compare two powerful kernel-base
learning machines, support vector machines (SVM) a
relevance vector machines (RVM), wi th in the
framework of hidden Markov model-based speec
recognit ion. Both machines provide nonl inea
discriminative classification ability: the SVM by kernel
based margin maximization and the RVM using
Bayesian probabilistic framework. The hybrid system
are compared on a vowel classification task and on t
continuous speech Alphadigits corpus. In both cas
the RVM system achieves better error rates wi
significantly fewer parameters.

1. INTRODUCTION

The most prominent modeling technique for spee
recognition today is the hidden Markov model wit
Gaussian emission densities. However, they suffer fro
an inability to learn discriminative information.
Artificial neural networks have been proposed as
replacement for the Gaussian emission probabiliti
under the belief that the ANN models provide bette
discrimination capabilities. However, the use of ANN
often results in over-parameterized models which a
prone to overfitting. Techniques such as cross-validati
have been suggested as remedies to the overfitt
problem but employing these is wasteful of bot
resources and computation. Further, cross-validat
does not address the issue of model structure and ov
parameterization.

Recent work on machine learning has moved towa
automatic methods for controlling generalization an
parameterization. One model that has gained mu

1. This material is based upon work supported by the National S
ence Foundation under Grant No. IIS0095940. Any opinions, fin
ings, and conclusions or recommendations expressed in this mate
are those of the author(s) and do not necessarily reflect the view
the National Science Foundation.
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popularity is the support vector machine (SVM). SVM
use the principle of structural risk minimization to
simultaneously control generalization and performan
on the training set. Previously [1], we have employe
the SVM in a hybrid framework for speech recognition
While the HMM/SVM hybrid produced a decrease i
the error rate, the implementation had some significa
shortfalls which we address in this work.

First, SVMs are not probabilistic in nature and, thus, a
not able to adequately express the posterior uncertai
in predictions. This is particularly important in speec
recogntion because there is significant overlap in t
feature space. SVMs also make unnecessarily libe
use of parameters to define the decision region. In t
paper, we describe a Bayesian model, termed t
relevance vector machine (RVM) [2], which takes th
same form as an SVM model, but provides a full
probabilistic alternative to SVMs. Sparseness of th
model is automatic using automatic relevanc
determination methods (ARD) [3]. We demonstrate a
initial application of RVMs to speech recognition an
compare peformance to a hybrid SVM system.

2. RELEVANCE VECTOR MACHINES

RVMs are an application of the evidence framewo
defined by MacKay [3] to kernel machines. As with
SVMs, the RVMs are formed by defining a vector-to
scalar mapping as a weighted linear combination
basis functions,

, (1)

with and .

is a set of basis functions that each form a nonline
mapping of the observed vector, , to a scalar. T
weights, , are the parameters to be tuned to produ

an accurate model (under some appropriate measure
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the phenomena we desire to learn. It is important
note the form of the basis functions, . Since SVM

are optimizing a distance measure in the transfo
space, they require that the basis functions take
form of a so-called Mercer kernel [4] (i.e. a kerne
which acts as a dot-product in some space). No su
restriction is placed on the basis functions that can
employed by the RVM. However, the powe
demonstrated by kernel machines gives compelli
reason to pursue this special form of the bas
function.

We reformulate (1) as

, (2)

where there is one weight, , associated with ea

training vector and defines a kernel functio

(not necessarily a Mercer kernel). Due to the larg
number of parameters in this model (one p
observation) we must guard against overfitting of th
model to the training data. SVMs use the contr
parameter, , to implicitly balance the trade-o
between training error and generalization. RVMs ta
a Bayesian approach and explicitly define an AR
prior distribution over the weights

(3)

where we have defined . This

prior acts to force weak components of the mod
toward a weight of zero, thus finding the inputs tha
are relevant to modeling.

Each weight in the RVM model has an individua
hyperparameter, , that is iteratively reestimated

part of the optimization process. As grows large

the prior on becomes infinitely peaked around zer

forcing to go to zero and, thus, contributing nothin

to the summation in (2). This process automatical
embodies the principle of Occam’s Razor because
explicitly seeks the simplest model that satisfies t
data constraints. In practice, the majority of th
weights are pruned, resulting in an exceedingly spa
model with generalization abilities on par with
SVMs [2]. To complete the Bayesian specification o
the model, we have to specify a prior probability ove
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the . In practice we use a non-informative (fla

prior to indicate a lack of preference [2].

With SVMs the form of (2) arises from the need to
optimize the classification margin in a high
dimensional space. With RVMs, however, the goal
to directly model the posterior probability distribution
The posterior is formed by generalizing the linea
model to a probability distribution with a sigmoid link
function,

, (4)

and adopting the two-class Bernoulli distribution fo
 to give

(5)

where . Under the assumption that each da

sample is drawn independently, the likelihood of th
training data set can be written as

(6)

where .

The objective of training is to find a parameter se
which yields a model that is well-matched to th
training data. In mathematical terms we want to find

. (7)

A closed form solution to this maximization is no
possible so we use the iterative approximation due
MacKay [3]. For a fixed , find the locally most
probable weights . This process typically involve
the use of a gradient descent optimization over t
parameters. The Hessian with respect to the weights
then negated and inverted to give an approximation
the covariance, , of a Gaussian posterior over t
weights, centered about . Using and as th
covariance and mean, respectively, of the Gauss
approximation, we can follow MacKay’s approach [3
to update the  by

. (8)

This iterative procedure is repeated until suitab
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ŵ α̂,( )
argmax

w α,
p w α t O,,( )=

α
ŵ

Σ
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convergence criteria are met. Central to this iterati
method is a second-order Newton maximization

requiring an inversion operation with

complexity O(N3). As the quantity of training data
increases, this becomes prohibitive. SVMs have
similar problem with scalability to large problems tha
has been addressed through iterative refinement of
training set [5]. Current research is focusing on simil
methods for RVMs.

3. HYBRID ASR SYSTEM

The hybrid recognition architecture used in this wor
and shown in Figure 2 is a parallel of the SVM hybri
presented in [1]. Each phone-level classifier is train
as a one-vs-all classifier. The classifiers are used
predict the probability of an acoustic segment. For th
SVM hybrid, a sigmoid posterior fit is used to map th
SVM distance to a probability. The RVM output is
naturally probabilistic so no link function is needed.

The HMM system is used to generate alignments
the phone level. Each phone instance is treated as
segment. Since each segment could span a varia
duration, we divide the segment into three regions in
set ratio and construct a composite vector from t
mean vectors of the three regions. In our experimen
empirical evidence showed that a 3-4-3 proportio
generally gave optimal performance. Figure 1 show
an example for constructing a composite vector for
phone segment. The classifiers in our hybrid syste
operate on composite vectors.

For decoding, the segmentation information
obtained from a baseline HMM system — a cros
word triphone system with 8 Gaussian mixtures p

P t w O,( )p w α( )
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region 1 region 2 region 3

mean region 1 mean region 2 mean region 3

0.3*k frames 0.4*k frames 0.3*k frames
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state. Composite vectors are generated for each of
segments and posterior probabilities are hypothesiz
that are used to find the best word sequence using
Viterbi decoder. The HMM system also outputs a s
of N-best hypotheses. The posterior probabilities f
each hypothesis are determined and the most lik
entry of the N-best list is produced.

4. RESULTS

An initial comparison of the RVM and SVM classifie
was carried out on a static vowel classification tas
the Deterding vowel data [6]. In this evaluation, th
speech data was collected at a 10 kHz sampling r
and low pass filtered at 4.7 kHz. The signal was th
transformed to 10 log-area parameters, giving
10-dimensional input space. A window duration o
50 msec was used for generating the features. T
training set consisted of 528 observations from eig
speakers, while the test set consisted of 4
observations from a different set of seven speake
The speech data consisted of 11 vowels uttered
each speaker in a h*d context. The small training s
and significant confusion in the vowel data make th
data set a very challenging task.

Table 1 compares the RVM and SVM performance o
the vowel classification task. Importantly, the RVM
classifiers achieve superior performance to the SV
classifiers while utilizing nearly an order of magnitud
fewer parameters. While we do not expect the super
error performance to be typical (on pure classificatio
tasks) we do expect the superior sparseness to
typical. This sparseness property will be particular
HMM

Segmental
Converter

Segment
Information

Features (Mel-Cepstral)

Hybrid Decoder

Hypothesis

Recognition

N-best
List

Segmental
Features
Figure 1: Example of a composite vector con-
struction using a 3-4-3 proportion
 Figure 2: Hybrid system architecture
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Approach
Error
Rate
(%)

No. of
weights

Training
Time
(hrs)

Testing
Time

(mins)

SVM 16.4 257 SVs 0.5 30

RVM 16.2 12 RVs 720 1

s
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s
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Approach
Error
Rate

Parameter
Count

SVM 35% 83 SVs

RVM 30% 13 RVs

s

important when attempting to build systems which a
practical to train and test.

The hybrid SVM and RVM systems have bee
benchmarked on the OGI alphadigit corpus with
vocabulary of 36 words [7]. A total of 29 phone
models, one classifier per model, were used to cov
the pronunciations. Each classifier was trained usi
the segmental features derived from 39-dimension
frame-level feature vectors comprised of 12 cepst
coefficients, energy, delta and acceleratio
coefficients. The full training set has as many as 3
training examples per classifier. However, the trainin
routines employed for the RVM models are unable
utilize such a large set. The training set was, thu
reduced to 2000 training examples per classifi
(1000 in-class and 1000 out-of-class). The test set w
an open-loop speaker independent set with 33
sentences. The composite vectors are also normali
to the range (-1,1) to assist in convergence of the SV
classifiers. Again, we see in Table 2 that the RVM
model outperforms (slightly) the SVM system while
using much fewer parameters. The training tim
remains an issue in producing a viable RVM system

5. SUMMARY

In this work we compared SVM and RVM classifier
in a hybrid speech recognition framework. RVMs hav
been shown to yield comparable performance with f
fewer parameters. However, the size of tas
computable by the RVM is limited due to the
complexity of the training process. We are in th
process of defining iterative methods which can b
used to train the RVM on the very large datasets th
are common to speech recognition. Further researc
also being directed toward a fully integrated RVM
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speech recognition system which does not depend o
Gaussian-based HMM system for generatin
segmental data or N-best lists.
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Table 1: Comparison of the SVM and RVM system
on a vowel classification task. Both system
outperform other nonlinear classifier approaches. T
RVM is able to achieve a lower error rate with muc
fewer parameters.
re

Table 2: Comparison of the SVM and RVM system
on a 2000-example per phone subset of the O
Alphadigits data. While the resultant RVM model i
extremely sparse, the training time is prohibitive fo
larger sets.
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