Motivation

- Mislabeled data in speech corpora ~5% inherent WER in Switchboard
- Learning in such noisy environments crucial for robust classifier design
- Learning in SVMs can be made efficient by identifying mislabeled data
- Differs from other techniques mislabeled data identified within the estimation loop
- Need for an explicit data cleanup stage eliminated

- Significant overlap in real speech data
- Use the non-overlap region to learn a decision surface
- Good open-loop performance possibly worse closed-loop performance

SVM Classification Based on Structural Risk Minimization

- Discriminative learning technique
- Models non-linear decision regions by transformation to higher dimension

SVM Theory

- **Hyperplane:** $\sum_{i=1}^{l} y_i \alpha_i \cdot K(x_i \bullet x) + b = 0, \alpha_i \ge 0$
- **Constraints:** $\xi_i \ge 0, y_i \left(\sum_{j=1}^l y_j \alpha_j \cdot K(x_i \bullet x_j) + b \right) \ge 1 \xi_i$

• Optimize:
$$\phi = \frac{1}{2}(w \cdot w) + C\sum \xi_i$$
, $w = \sum_{i=1}^l y_i \alpha_i \cdot x_i + b$

- Training vectors with non-zero α are called support vectors
- K is the non-linear kernel
- C controls the penalty for errors
- Σξ_i is an approximation for the number of errors allowed for the training set

Bounded Support Vectors (BSV)

- Chunking converges faster when the working set is composed of examples that violate the Karush-Kuhn-Tucker optimality conditions
- Several support vectors with multipliers at the upper bound (C) they form the BSVs
- If an example is identified as a BSV for several iterations, the example is probably mislabeled (or noise)
- Elimination of such examples from further estimation gives faster convergence and better classifiers

- 2-D data simple classifier sufficient
- Noisy data generated by intentionally mislabeling some negative examples

Synthetic Data Example - II

Mislabeled data identified

Fewer SVs

Simple classifier

Mislabeled data not identified Increased number of SVs

Complex classifier

- Consistent identification of BSVs leads to effective culling of mislabeled data
- Identifying BSVs results in simpler and more effective classifiers

Real Data Example

 First two cepstral coefficients of phones 's' and 'f' — example shows the need for identifying mislabeled data in real speech

- 118-dimensional composite feature vectors used for SVM classifiers — log duration included
- Classifiers bootstrapped from a cross-word triphone system

System Performance

	Without Data Cleanup	With Data Cleanup
Substitutions	11.1	10.8
Deletions	0.5	0.5
Insertions	0.5	0.3
Total Error	12.1	11.6

- OGI Alphadigit data 8500 training sentences and 1000 test sentences
- Mean relative improvement in classifier accuracy — 9%
- Decrease in the number of support vectors in new system — 41%
- Improvement in performance of the hybrid system 7%

<u>Conclusions</u>

- Need for identification of mislabeled data speech databases are not perfectly transcribed
- Identifying mislabeled data important for hybrid systems which use bootstrapping
- Improved hybrid system performance —
 7% relative improvement in terms of WER
 41% fewer support vectors in the new system
- Need for a data-driven methodology to estimate the training error penalty
- Need for formulation of a confidence measure