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ABSTRACT incorporated side-based cepstral mean subtraction [3].
Cepstral mean subtraction is computed as follows:
In this paper, we describe the ISIP Automatic Speech
Recognition system (ISIP-ASR) used for the Hub-5  Yi(t) = X () =%, (t) )
2000 English evaluations. The system is a publiq(
domain cross-word context-dependent HMM based ,
system and has all the functionality normally expecteStimaté of the mean computed from all analysis

in an LVCSR system, including Baum-Welch training rames belonging to the same conversation sidg, as
for continuous density HMMs, phonetic decision _

tree-based state-tying, word graph generation anfior the evaluation, we used the front-end to generate
rescoring. The acoustic models were trained on 632 FFT-derived cepstral coefficients and log-energy.
hours of Switchboard and 20 hours of CallHome dataThese features were computed using a 10 ms analysis
frame and a 25ms Hamming window. First and

The system had a word error rate of 43.4% onsecond derivative coefficients of the base features are
Switchboard, 54.8% on CallHome, and an overall

. _ _ appended to produce a thirty-nine dimensional feature
error rate of 49.1%. This paper describes thg,gctor The 12 base cepstral features are then debiased

evaluation system in detail and discusses ou[ging side-hased cepstral mean subtraction.
post-evaluation experiments and improvements.

=1, 2,..., N where k is the cepstral index(t)  isan

1.2. Parameter Estimation
1. SYSTEM OVERVIEW

The training module consists of an Expectation
The ISIP-ASR system is a public domain cross-wordMaximization (EM) based acoustic optimizer which
context-dependent HMM-based system that is freelyises the Baum-Welch algorithm for robust parameter
available for both commercial and academic use wittestimation. This parameter estimation component
no licensing or copyright restrictions [1]. It consists of supports continuous-density Gaussian mixture models
three primary components: the acoustic front-endwith diagonal covariances. It also supports
HMM parameter estimation module and a hierarchicatontext-dependent models with state and model tying.
single-pass Viterbi decoder. Acoustic training has
been enhanced to incorporate both Viterbi and® problem often associated with training
Baum-Welch algorithms. The decoder can perforntontext-dependent models is the lack of training data

N-gram decoding and process word graphs. to cover all the models in the system. To avoid this
problem maximum likelihood phonetic decision
1.1. Acoustic Front-End tree-based state-tying is employed in the system [4].

The decision tree uses phonetic rules that are based on
The system uses a common front-end that transformleft and right contexts and a tree is grown for each
the input speech signal into mel-spaced cepstradtate of each context-independent phone in the system.
coefficients appended with their first and secondlhe evaluation system uses a context of one phone on
derivatives [2]. Standard features of this front-end aresither side of the center phone. The states of models
pre-emphasis filtering, windowing, debiasing, andwith similar phonetic contexts are allowed to share
energy normalization. To improve robustness todata by tying them together. This leads to better
channel variations and noise, our evaluation systerparameter estimates as all of the model clusters are
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Figure 1. Data flow for acoustic model training. Note that the CallHome data is only incorporated into the training
process after 4-mixture training.

seen in the training set a sufficient number of times.
This also allows the system to generate models fqg Syst
unseen contexts Table 1 shows the reduction in ystem Before After

unique HMM states due to state-tying. State-tying | State-tying

Word-Internal 9580 4194

Number of States

=

A synopsis of the acoustic model estimation in ou
2000 evaluation system is shown in Figure 1. The Cross-Word 67684 10619
system was trained on 60 hours of Switchboard-l datgaple 1: Number of states in the system before and
from 2998 conversation sides, and 20 hours Ogter state-tying.

CallHome data from 240 conversation sides. ) )
Context-independent (CI) phone models were firstVeré provided by SRI and were trained by
trained using only the Switchboard data. Thesdntérpolating language models generated using
Cl models were iteratively trained from one mixture SWitthboard, CallHome and Broadcast News (BN)

component to 32 mixture components, and were thefata. The bigram version was used to generate word

used to generate phone-level alignments. Thesgraphs while the trigram LM was used for rescoring.

alignments were used throughout the remainder of ouf 1€ trigram and bigram LM's were pruned using

training process. Context-dependent phone modefSRI'S ~entropy-based ~method [5] to eliminate
were seeded with single-mixture monophonesneg“g'ble bigram and trigram parameters. The final

reestimated using a four pass procedure, and thdfgram language model contained 138k trigrams,
state-tied to cluster those states and models that wer€OK bigrams and 33k unigrams. The final bigram LM
statistically similar. Mixture splitting was done using Was obtained by all trigrams from the trigram LM.

an iterative splitting and training scheme. After thetpa |exicon used by the system had a vocabulary of
four-mixture models were trained, CallHome data Wasy» 500 words derived from the WS'97 test lexicon.
added to the training set and the training continued tqh’is lexicon was then expanded to include words

finally generate 16 mixture models. Word-internal andpresent in the SRI language model but not present in
cross-word context-dependent phone models Wer§, qriginal lexicon. The final lexicon had a

built in this process. vocabulary of 33,200 entries.

1.3. Language Model and Lexicon 1.4. Recoghnition

We used both bigram and trigram backoff languagélrhe ISIP-ASR decoder is based on a hierarchical
models in the evaluation system. The language modelmplementation of the standard time-synchronous
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Figure 2: A two-stage evaluation system. It consists of a pre-processing stage where word-internal acoustic models
and a bigram language model are used to generate word graphs. A second stage processes the word graphs while
using cross-word acoustic models and a trigram language model

Viterbi search paradigm [6]. The decoder supports 2. RESULTS AND ANALYSIS

various modes such as N-gram decoding, word graph

generation, word graph rescoring and Supervise-Ehe performance of the system on the evaluation 2000
alignment. The decoder can handle both word-interni§St Sét is shown in Table 3. We also conducted several
and cross-word context-dependent models, and use§Xperiments after the evaluations to analyze system

. . Performance, and to improve deficiencies. The details
lexical tree-based organization to conserve memoa/ . .
f this work are described below.

during context expansion. Pruning techniques are

employed at all levels in the search space to improvg 1 Error Analysis

computational  efficiency  without  significantly

increasing error rate. From Table 3 it can be noted that the overall system
performance is better on Switchboard than on

For the evaluation, recognition was performed in twéallHome. This is consistent with other published

stages using the decoder as shown in Figure 2. In tf@sults. However, the gap between our Switchboard

first pass, we used 16-mixture word-internal€sults and CallHome results is larger than normal and

context-dependent phone models and a bigra@ay be due to the late introduction of the CallHome

: ata into the training procedure.
language model to generate word graphs. This stage gp

was followed by word graph rescoring usingan analysis of the word graphs produced in the first
16-mixture cross-word context-dependent phone

models and a trigram language model. The output of _ Memory
this pass was the final evaluation hypothesis. Time (hrs) (MB)

. . Pass 1 1083 500
Processing was performed on 600 MHz Pentium IlI

machines running Solaris 7. These machines had Pass 2 23 300
1 Gigabyte of main memory and 2 Gigabytes of swap

space. The time and memory requirements for the twdable 2: Time and memory requirements for
decoding stages are tabulated in Table 2. ISIP-ASR system on the entire evaluation dataset.




Total | Mal Femal cross-word acoustic models with parameter sharing.

o aie emaie The acoustic models were trained on 60 hours of

CallHome | 54.8% | 55.0% | 54.8% Switchboard and 20 hours of CallHome. Recognition

was done using a two pass strategy — first pass of

Switchboard | 43.4% | 41.5% | 45.3% word graph generation with word-internal models and
overall 49.1% | 51.2% | 45.4% a bigram LM_ foIIovv_ed by a second pass_of word

graph rescoring using cross-word acoustic models

and a trigram LM. This system had a word error rate
of 43.4% and 54.8% on the Switchboard and
stage of our decoding process shows that poor qualit¢allHome components of the evaluation dataset. A
of the word graphs (WER of 19.8%) is a major priority for our future work will be the introduction of
contributor to our high evaluation error rate. Note thatour new search engine that accommodates large
this is only marginally better than the best error ratdanguage models, and incorporation of a generalized

Table 3: Performance of ISIP-ASR system.

reported in the evaluation. We believe that this is in parficoustic

modeling component that handles

caused by the heavy pruning of the bigram languagerbitrarily-sized context-dependent phone models.

model used to build the word graphs and also by the
heavy pruning we employed during word graph
generation. This hypothesis is currently being tested.
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2.2. Post-evaluation Experiments
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Table 3 also points out a difference in performance
between male and female speakers. Performance of
male speakers is better than that of female speakers,
suggesting that our models were more tuned to mal ]
speakers. This is most likely a by-product of the fact
that even though the number of males and females was
approximately equal in the training data, the male
speakers accounted for a larger percentage of t
acoustic data. Our initial experiment with
gender-dependent models has produced a 0.6%
improvement in WER. 3]

After the formal evaluations we performed a series of
experiments to incorporate features into our system
that are common in the other evaluation systems. We
also found a serious algorithmic error in the way we
handle N-gram language models during rescoring of4]
word graphs with a trigram LM. Surprisingly, fixing
this error gave only a 0.5% improvement in WER on
the Switchboard portion of the evaluation set. We are
currently investigating whether this problem was also
an issue during the word graph generation stage of thi]
decoding process.

3. CONCLUSION
[6]
The ISIP-ASR system has been used for the Hub-5
evaluations for the first time this year. The system
configuration included multiple Gaussian mixture
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