
☛ Humans follow an internal sense of timing

☛ Duration is one of the most reliable and accessible
prosodic features
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☛ Duration augmented bigram probability:

☛ Begin/end of sentence ecial c
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☛ Word duration represented as a single scalar attribute

☛ Word duration bigram model ( ):

where  is the word identity and  is the duration

☛ Can be implemented in a rescoring paradigm as an
additional knowledge source applied to word
hypotheses (leads to a feasible implementation)
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☛ Baseline system: WER 44.4% on WS97 test set

☛ Recognition errors (SWB) deviate from true distributi
☛ Word durations preferred over phone durations

☛ Baseline: 32.4% WER on 637 SWB utterances

☛ Rescoring of 100-best hypotheses (provided by BBN)

☛ Oracle WER: 21.2%

[weight 1d, weight 2d]

scale [0.1, 0.1] [0.1, 0.5] [0.5, 0.1]

0.01 32.5 32.4 32.3

0.05 32.4 32.3 32.2

0.1 32.3 32.3 32.2

Anal ysis For The Bigram “Y ou Kno w”

Ref: found out that that wasn’t
Base: and uh that was an
Dur: found out that was an

☛ Duration distributions
for selected bigrams
containing the word “I”
(WS97 training data)

☛ Comparison of left
context to right context
duration for the 750
most common bigrams
containing the word “I”
(WS97 training data)

statistics for
incorrect tokens

statistics for
correct tokens

duration
 model

statistics for YEAH in the context of !SENT_START

☛ Variance of each word in
the bigram is low
(implies duration is a
well-behaved feature)

☛ Unigram duration of
each word in the bigram
is not predictable from
the other word (warrants
the use of higher order
n-gram duration models)
on
Back-O

☛ Many duration bigrams

☛ Combine bigram-specifi
word-independent mod

☛  empirically chosen i
estimated using delete
smoothing algorithms)
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☛ Difference between the average duration model score for

correct versus incorrect bigrams is crucial to perfor-
mance (analogous to F-ratio)

Summar y

☛ A consistent statistical modeling framework that
exploits word duration models

☛ Modest improvement on SWB:

• BBN 100-Best Lists: 0.2% WER absolute
• ISIP Word Graph Rescoring: 0.3% WER absolute

☛ Future work:

• Incorporate duration models into the grammar
decoding loop

• Better models of infrequently occurring bigrams:
error analysis indicates greater potential benefits

• Develop more sophisticated statistical models
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