
☛ suprasegmental information plays an important role in
human speech

☛ usually model suprasegmental information jointly with
segmental measures
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☛ Modeling duration within the context of the bigram
language model
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☛ sparsity of training data for many duration bigrams

☛ combine bigram-specific models with word-specific and
word-independent models in a back-off framework
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☛ each feature represented as a single scalar attribute of
each word

☛ incorporating word duration into a bigram language
model:

     where,  is duration,  is word identity and  is the new
feature vector

Pr FiFi 1–( ) Pr wi τiwi 1– τi 1–,,( )=

Pr τiwi wi 1– τi 1–, ,( )Pr wiwi 1– τi 1–,( )=

τ w F

Suprasegmental Inf ormation

  model

  statistics for the correctly

  statistics for the incorrectly

found out that that wasn’treference:

duration model:

2-d weights
1d weights

☛ difference between the average duration model score for

correct versus incorrect bigrams is crucial to perfor-
mance
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☛ baseline system -- WER 44.4% on WS97 test set
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 recognized tokens

☛ analysis on recognition outputs show correctly tokens
following real distribution closely

                          found out that was an

☛ baseline -- 32.4% WER on 637 SWB utterances

☛  rescoring the 100-best hypotheses

☛  N-best error rate of 21.2%

[ weight 1d, weight 2d]

scale 0.1 0.1 0.1 0.5 0.5 0.1

0.01 32.5 32.4 32.3

0.05 32.4 32.3 32.2

0.1 32.3 32.3 32.2

and         uh                 that               was         anbaseline:
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