
☛ humans follow an internal sense of timing

☛ duration is one of the most reliable and accessible
prosodic features

Motiv ation

Ref: found out that that wasn’t
Base: and uh that was an
Dur: found out that was an



Implicit Duration Models Insufficient

☛ recognition errors (SWB) deviate from true distribution
☛ word durations preferred over phone durations

statistics for
incorrect tokens

statistics for
correct tokens

duration
 model

statistics for YEAH in the context of !SENT_START



Switc hboar d Data



☛ word duration represented as a single scalar attribute

☛ word duration bigram model ( ):

where  is the word identity and  is the duration

☛ can be implemented in a rescoring paradigm as an
additional knowledge source applied to word
hypotheses (leads to a feasible implementation)
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Suprasegmental Inf ormation



Bigram Duration Model
☛ Duration augmented bigram probability:

☛ Begin/end of sentences treated as special cases:
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Back-Off Weighting

☛ many duration bigrams have insufficient training data

☛ combine bigram-specific models with word-specific and
word-independent models in a back-off framework

☛  empirically chosen in initial experiments (can be
estimated using deleted interpolation or other such
smoothing algorithms)
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Duration Anal ysis-1
☛ duration distributions for

the word “I” in bigram
contexts

☛ average duration
statistics for the 750
most frequently
occurring word bigrams
in SWB that include the
word “I”



Duration Anal ysis-2

☛ most frequently occur-
ring bigrams exhibit predict-
able suprasegmental
characteristics

☛ duration predictable
and lower variance expected



Error Anal ysis

2-d weights
1d weights

☛ difference between the average duration model score for

correct versus incorrect bigrams is crucial to perfor-
mance (analogous to F-ratio)



N-best Rescoring Results
☛ Baseline: 32.4% WER on 637 SWB utterances

☛ Rescoring of 100-best hypotheses (provided by BBN)

☛ Oracle WER: 21.2%

[ weight 1d, weight 2d]

scale [0.1, 0.1] [0.1, 0.5] [0.5, 0.1]

0.01 32.5 32.4 32.3

0.05 32.4 32.3 32.2

0.1 32.3 32.3 32.2



Word Graph Rescoring Results
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☛ Baseline system: WER 44.4% on WS97 test set



Summar y

☛ A consistent statistical modeling framework that
exploits word duration models

☛ Modest improvement on SWB:

• BBN 100-Best Lists: 0.2% WER absolute
• ISIP Word Graph Rescoring: 0.3% WER absolute

☛ Future work:

• Incorporate duration models into the grammar
decoding loop

• Better models of infrequently occurring bigrams:
error analysis indicates greater potential benefits

• Develop more sophisticated statistical models


