Motlv ation

Ref: found out that that wasn'’t
Base: and uh that was an
Dur: found out that was an

[J  humans follow an internal sense of timing

[1  duration i1s one of the most reliable and accessible
prosodic features
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Implicit Duration Models Insufficient

statistics for YEAH in the context of ISENT_START

statistics for
correct tokens

duration
model

~ statistics for
incorrect tokens

[1  recognition errors (SWB) deviate from true distribution
[1  word durations preferred over phone durations
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Switc hboar d Data
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Suprasegmental Inf ormation

[1 word duration represented as a single scalar attribute

0 word duration bigram model ( F é\N)EE

Pr(F; ‘ Fi_q1) = Pr(w,T, ‘Wi_l,Ti_l)

= PI’(Ti ‘ WI,WI —l’Ti _1) Pr(Wl ‘ WI _1,Ti _1)

where w Is the word identity and is the duration

[1 can be implemented in a rescoring paradigm as an
additional knowledge source applied to word
hypotheses (leads to a feasible implementation)
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Bigram Duration Model

[1 Duration augmented bigram probability:

-1 Wi ) S PW_g T )

P(ti_y T | W) PW_y)
[1 Begin/end of sentences treated as special cases:

_ P(Ty | SpegWe) P(wy)
"1 Peg™? T TR [Seg PlSpeg

P(Ti_1 ‘ Wi _1Send P(W, _1:5end
Pt _q1 | Wi 1) P(W _1)

P(Send | Wi—1Ti—1) =




Back-Off Weighting _

[1 many duration bigrams have insufficient training data

[1 combine bigram-specific models with word-specific and
word-independent models in a back-off framework

Pan(Tj _ 1 Tj [ Wi W) =
QpP(Ti _ 1T ‘Wi _qwi) - Q Pt 4 ‘ wi _ 1) P(T; ‘ W) + QP (1)
Qp+Q,+Q

9

0 Q empirically chosen in initial experiments (can be
estimated using deleted interpolation or other such
\_ smoothing algorithms)




Duration Anal ysis-1
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[1 duration distributions for
the word “I” in bigram
contexts
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Duration Anal ysis-2

most frequently occur-
ring bigrams exhibit predict-
able suprasegmental
characteristics

duration predictable
and lower variance expected

Duration histogram for the bigram "YOLU KNOW
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Error Anal ysis

difference between the average duration model score for

correct versus incorrect bigrams is crucial to perfor-
mance (analogous to F-ratio)
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N-best Rescoring Results

[1 Oracle WER: 21.2%

[1 Baseline: 32.4% WER on 637 SWB utterances

[1 Rescoring of 100-best hypotheses (provided by BBN)

[ weight 1d, weight 2d] \

scale | [0.1,0.1] [0.1,0.5] [0.5,0.1]
0.01 32.5 32.4 32.3
0.05 32.4 32.3 32.2
0.1 32.3 32.3 32.2




Word Graph Rescoring Results

%WER

[1 Baseline system: WER 44.4% on WS97 test set
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Summary

A consistent statistical modeling framework that
exploits word duration models

Modest improvement on SWB:

« BBN 100-Best Lists: 0.2% WER absolute
e |SIP Word Graph Rescoring:  0.3% WER absolute

Future work:

 Incorporate duration models into the grammar
decoding loop

« Better models of infrequently occurring bigrams:
error analysis indicates greater potential benefits

e Develop more sophisticated statistical models




