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ABSTRACT

Suprasegmental information, while generally thought to play an important role in speech recognition by human listeners, has sho
promise in previous attempts to integrate into ASR systems. This paper outlines an approach that will successfully exploit suprase
information by modeling duration within the context of N-gram language modeling. Results show that up to half of the variance in
level timing can be explained in terms of a simple bigram duration model. These experiments were conducted using the Switchbo
pus of conversational speech over the telephone. The paper also outlines a way of augmenting the N-gram language model with
mental information.

1. INTRODUCTION

Suprasegmental information is generally believed to play an important role in the recognition of speech by human listeners, and
been a widespread desire and numerous attempts to incorporate this kind of information in ASR systems. (See, for example, R. G
Shriberg, A. Stolcke, D. Hakkani-Tür, and G. Tür, "Prosody Modeling for Speech Recognition and Understanding," Presented at Hub-
5 Conversational Speech Recognition (LVCSR) Workshop, Linthicum Heights, Maryland, USA, June 1999.F. Alleva, X. Huan
Hwang, and L. Jiang, "Can Continuous Speech Recognizers Handle Isolated Speech?," Speech Communication, vol. 26, pp. 183
1998.A. Stolcke, E. Shriberg, D. Hakkani-Tür, and G. Tür, "Modeling the prosody of hidden events for improved word recognition
ceedings of the 6th European Conference on Speech Communication and Technology, Budapest, Hungary, September 1999.A. S
Shriberg, D. Hakkani-Tür, G. Tür, Z. Rivlin, and K. Sonmez, "Combining words and speech prosody for automatic topic segmen
Proceedings of the DARPA Broadcast News Workshop, pp. 61--64, Herndon, VA, USA, 1999..) Unfortunately, these attempts ha
only marginally successful, at best. A typical method of incorporating suprasegmental information has been to add suprasegme
sures to the segmental feature vector, and then to model the segmental and suprasegmental information jointly with a hidden
model (HMM). An alternative would be to incorporate the suprasegmental information at a higher level, namely in the language
This paper attempts to motivate such an approach and discusses how one might go about doing this.

The N-gram is currently the language model most commonly used in ASR. There are several reasons for this, not the least of whi
it provides generally superior performance. It is also relatively easy to implement and train. These characteristics also make the
model suitable as a means of modeling suprasegmental information. And while the N-gram lacks explicit linguistic structure, muc
power lies in an ability to capture semantic information (by means of the strong correlation of meaning with specific word sequ
Therefore, since suprasegmental information is also strongly tied to meaning, the N-gram would seem to be a natural and promisin
capture it.

2. N-GRAM LANGUAGE MODELS INCORPORATING SUPRASEGMENTAL FEATURES

Candidate features include the usual prosodic features of pitch, timing and energy, as represented by the pitch period in millisecP),
the time interval in seconds (T), and the energy (E). A logarithmic transformation of these is suggested, in order to produce a more no
statistical distribution of feature values.

The usual N-gram model is simply the probability of a word given the preceding N-1 words:

The question is how to represent the candidate prosodic features at the word level. There is no obvious and correct way of doing
in order to begin, let each prosodic feature be represented as a single scalar attribute of each word. For example,Pj could be the average
pitch period, averaged over all voiced frames in wordj; Tj could be the time interval between the end of wordj-1 and the end of wordj; and
Ej could be the rms energy, averaged over wordj.  When these features are added to the model, the model becomes:

where
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2.1 WORD DURATIONS AND THE BIGRAM MODEL

To begin exploration of suprasegmentals, we should start with a model that satisfies the following criteria:

1.  Suprasegmental features are limited to those considered most valuable.

2.  These features can be modeled easily and adequately.

3.  The model is simple and takes little time and effort to implement.

Toward this end, word-level duration is chosen as the single feature that best embodies these characteristics.  The reasons are:

 Word duration is simple and well defined, at least in terms of speech recognition output.

 Word duration data are available for training as a side-effect of traditional speech recognition training.

Word duration modeling may be incorporated as a post-processing step on N-best or lattice output. This allows the use of pre-c
acoustic model likelihoods and thus a much simpler and quicker implementation. (Integrating duration information in
acoustic-level search would certainly improve performance. Positive results should be obtainable without such integratio
ever, if duration information is of sufficiently significant value.)

4. Our initial attempts at incorporating word durations into our model have focused on a rescoring paradigm using a bigram la
model.  In this case, the feature vector becomes:

where

τj = log(t0 + tend(j) - tbeg(j)),

tbeg(j) andtend(j) are the beginning and ending times of word j, respectively, and

t0 is 10 msec.

The N-gram probability then becomes:

3. STATISTICAL ANALYSIS ON THE SWITCHBOARD CORPUS

The feasibility of creating and using the model described above is a critical issue. Feasibility hinges on training data and covera
key questions are: How much training data is required to estimate model parameters, and how much coverage is afforded by the f
models that are adequately trained? These questions were explored for telephone conversational speech using a large (700k w
of the Switchboard corpusJ. Godfrey, E. Holiman and J. McDaniel, "SWITCHBOARD: Telephone Speech Corpus for Resear
Development," Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 1, pp. 517--
Francisco, CA, USA, March 1992.www.ldc.upenn.edu/readme_files/switchbrd.readme.html, designated here as SBCss. SBCsswas used
for all the experiments discussed in this section.

Figure 1. Coverage and occurrence statistics for the most frequently occurring word bigrams in the SBCss dataset. shows both t
age and the amount of training data available for the SBCssdataset. For these data, half of all word tokens are covered by 3000 bigra
and there are 30 or more occurrences of each of these bigrams in the data subset. (For this analysis, “sentence-begin” and “sen
were excluded from the tabulation.)
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Figure 1.  Coverage and occurrence statistics for the most frequently occurring word bigrams in the SBCss dataset.

From these results, it appears that a duration model may be feasible, because a substantial fraction of all Switchboard speech is c
bigrams with a substantial amount of training data. The question, then, is whether such a model might be effective. To answer th
tion, we need to study bigram statistics in detail. Table 1. The most frequently occurring word bigrams in the SBCss dataset. lists
the most commonly occurring word bigrams. These bigrams represent stereotypical conversational interactions that might be ex
exhibit correspondingly stereotypical and therefore predictable suprasegmental characteristics. It is therefore reasonable to e
duration of these words to be more predictable and exhibit lower variance when they appear in these specific bigram contexts.

Table 1.  The most frequently occurring word bigrams in the SBCss dataset.

In order for the bigram duration model to contribute to ASR performance, the duration of the words in a bigram must be sensitiv
identity of the bigram. Specifically, the duration of the second word in a bigram must be a function of the bigram and/or the duratio
first word, so that the variance of the duration given this information is much smaller than absent this information. To get a quan
appreciation for this, duration statistics were tabulated for the SBCssdataset. Word begin/end times were assigned for all words using
ASR system to perform forced alignment.

Word 1 Word 2 cou
nt

Word 1 Word 2 cou
nt

YOU KNOW 753
8

I THINK 282
2

AND UH 239
6

I DON'T 235
0

IN THE 197
8

AND I 186
9

OF THE 184
5

A LOT 171
5

KIND OF 161
2

I I 141
0

LOT OF 133
9

IT WAS 128
9

I MEAN 127
0

DON'T KNOW 112
9

TO BE 111
1

I GUESS 110
3

YEAH I 108
3

DO YOU 100
7



t of aver-
tion fea-
. Each of
ion of
word 1.
ord align-

SBCss
-
e
in

such as
-
n con-

s with
lysis. To
750 big-
-
rams. A
in Table
Figure 2.  Average duration statistics for the 750 most frequently occurring word bigrams in the SBCss dataset.

Figure 2. Average duration statistics for the 750 most frequently occurring word bigrams in the SBCss dataset. shows a scatterplo
age duration statistics for the top 750 word bigrams, with the average being computed in the log domain (as defined for the dura
tures). The average duration of word 2 and the average between-word duration are plotted versus the average duration of word 1
these bigrams occurred more than 80 times in the SBCssdataset. There appears to be a weak inverse correlation between the durat
word 1 and word 2, at least up to 200 msec. There also is a positive correlation between the inter-word time and the duration of
Note, however, that most between-word average durations are less than 10 msec, which was the frame period used by the ASR w
ment system.  (Thus, most of the time there isno inter-word gap for these most common bigrams.)

More informative than this global scatterplot would be a plot of the average duration statistics for aspecificword in a variety of different
bigram contexts. This is shown in Figure 3. Average duration statistics for the 750 most frequently occurring word bigrams in the
dataset that include the word “I”. for the most common word in the Switchboard corpus, “I ”. This figure is a scatterplot of average dura
tions for all common bigrams that include the word “I ”. Note that the average duration of “I ” ranges over a factor of 2, depending on th
context. The duration statistics of “I ” in bigram context are illustrated in more detail in Figure 4. Duration distributions for the word “I”
several bigram contexts., which shows the probability distribution function of the duration of “I ” in several different bigram contexts.
Note that for durations of 200 msec or more, there is an order of magnitude difference in duration probability for short contexts
“ I MEAN ” and “I GUESS” as compared to long contexts such as “I I ” and “I <END> ”. Note also the (apparently anomalous) high prob
ability of minimum duration, for all contexts. It would be interesting to know whether this is caused by the model-imposed duratio
straint, or by misalignment during recognition.

Figure 3. Average duration statistics for the 750 most frequently occurring word bigrams in the SBCssdataset that include the word
“ I ”.

In addition to modeling differences in average duration, it is also important that the bigram model be able to predict duration
improved accuracy – i.e., with reduced variance. To study this aspect of the model, a subset of common words was chosen for ana
ensure a variety of bigram contexts, choice was limited to those words that occurred as the second word in at least 20 of the top
rams. There were seven such words, namely “A”, “ I ”, “ IT ”, “ THAT ”, “ THE”, “ TO”, and “YOU”. For these words, the average bigram
dependent variance of duration was compared to the grand variance computed over all cohort contexts within the top 750 big
reduction in variance ranging between 10 and 20 percent was observed for the seven words studied, as listed in the “bigram” row
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2. Percent reduction in the variance of the duration of word 2, as a function of the bigram context and linear prediction based on t
tion of the first word, for seven frequently occurring words..

In addition to the bigram context, there is also the potential to predict the duration of word 2 based on the duration of word 1. To de
the contribution from this source, covariance statistics for bigram word durations were computed for the top 750 bigrams. This g
a simple linear predictive model, a reduction of between 15 and 30 percent, as listed in the “duration” row in Table 2. Percent redu
the variance of the duration of word 2, as a function of the bigram context and linear prediction based on the duration of the first w
seven frequently occurring words.. These two factors, when combined, yield a total variance reduction of between 25 and 45
depending on the bigram.

Figure 4.  Duration distributions for the word “I ” in several bigram contexts.

Table 2. Percent reduction in the variance of the duration of word 2, as a function of the bigram context and linear prediction ba
on the duration of the first word, for seven frequently occurring words.

Figure 5. Histogram of correlation coefficients between word durations for the top 750 bigrams. Correlation is computed bet

Word: A I IT TH
AT

THE TO YO
U

bigram 8 9 11 22 8 11 12

duration 30 23 25 27 31 39 16

total 36 30 33 43 37 46 26
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Figure 5 is a histogram of the correlation between word durations for all 750 bigrams. Note that the between-word correlations
around 0.3. Note also that the first word in the bigram and the duration of the between-word gap tend to be correlated. This sug
possibility of improving performance by including this between-word gap in the duration model.

4. PLANS

Between now and the workshop in December we plan to implement and test the model that we have outlined. Existing Switchboa
els will be used to perform a conventional ASR decoding of a Switchboard test set. Bigram duration models will then be used to re
search on lattice output from the conventional system. In order to implement this system, we need to know how to use the bigram
model to calculate language model probabilities, and we need to have a robust method of estimating model parameters.

4.1 COMPUTING LANGUAGE MODEL PROBABILITIES

For ASR decoding, what we actually need to compute is the probability of the word sequence given the data.  In this case, we have

From here a couple of reasonable simplifications can be made by asserting that the unconditioned probability of word duration, Prτi), is so
broad as to be approximately constant and therefore negligible. Also, perhaps due more to expediency rather than reasonabl
assert that the probability ofwi may be assumed to be more or less independent of the duration of the preceding word,τi-1. This gives the
following simplification:

whereC is a constant. This gives a simple means of augmenting the conventional language model with a probability model for th
tion of a word, given the identity and duration of the previous word.

4.2 ESTIMATING DURATION MODEL PARAMETERS

The question now is how to model the duration and then how to estimate parameters of the model. Training data will be limited,
we are modeling at the (high) level of words, so a parametric approach is virtually mandatory. As an initial probability model, the
ian model serves as an easy choice. It is also a reasonable choice, because of the log transformation performed on the duration.
tion model factors into the ratio of two duration probability models, conditioned on bigram:

Full covariance models will be needed, to capture the correlation between the bigram word durations. Because of the sparsity o
data, a weighting scheme will be necessary in order to protect against estimation errors by combining bigram-specific probability
with word-specific and word-independent models of word duration. One method of weighting is to weight estimates according
number of training tokens used versus the number needed.  For example:

where

whereNx is the number of training tokens used to estimate model parameters for modelx (with Nneededbeing the number needed to ensur
satisfactory estimates), and whereC is adjusted so that the weights sum to 1. By using such a weighting scheme, it should be poss
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treat all words in a uniform way, with word duration information contributing to the score in proportion to the amount of training
available.
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