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Intr oduction A

Proper nouns and errors in LVCSR
Pronunciation networks needed
Direct letter-to-sound rules do not apply

1 Rule-based systems are unsuitable,
NN-based systems do not work
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g Motiv ation

[1 Classify groups of letters into phonemes
using nonlinear stochastic models

Training

Pronunciation Letter (] Phoneme
= ) G

Stochastic
System Model

Proper Noun Multiple likely
SENTD -

Generation

[1 Statistical neural networks fail to
generalize on large data sets
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Decision T ree Classifier s
1 Combine heuristics and statistics

1 ldeally suited for nonlinear classification

] Classification based on data attributes
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g Decision T ree Over view

[1 Recursively partition data into groups

[1 Information theoretic basis for splitting,
stopping, and pruning

[1 Capture complex relationships
\-
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- DT Splitting Criteria
[1 Used to design “questions” at each node

[1 Bayesian splitting

— maximize a posteriori class likelihoods
[1 Information gain splitting

— maximize the information gain
[1 Information gain ratio splitting

— maximize information gain normalized
by the total information in split

[ Maximum entropy splitting
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DT Pruning Criteria

[1 Collapse subtree into a terminal node if it
results in lower predicted error

[1 Cost-complexity — trade off tree size and
error rate

[1 Pessimistic pruning — statistical error
estimates at node adjusted as per bias
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ISIP DT Toolkit

[] Limitations of existing free software

— small number of classes

— number and values of attributes

— restrictions on class labels

— not amenable to text-based processing

ISIP DT toolkit allows user-defined criteria
for splitting, pruning, and stopping

Data tagging allows selective attribute
usage without reformatting
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g Surname Pr onunciations

[1 Train DT on name-pronunciation pairs

[1 Sliding window of letter context
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Pronunciation Dictionar y

18494 surnames, 25648 pronunciations

Worldbet phonetic convention to handle
multilingual data

Hand-transcribed pronunciations
Automatic letter-to-phoneme alignment
Public domain resource

‘Einstein Y al _nstal n)
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Experiments

Training set of 15000 names (3494 names
held out for testing)

Three such partitions for cross-validation
of results

Context lengths of 3, 5 and 7

Binary univariate tree, single (1-best)
pronunciation output

Bayesian and gain ratio splitting
Pessimistic pruning
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% Error
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Analysis

[1 DTs try to model letter context-to-sound
relationship

[1 As context size increases

— closed loop performance improves

— open loop performance decreases due
to overfitting

[1 Extremely confusible classification space

[1 Performance of both splitting criteria Is
comparable

[1 Pruning only helps marginally
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General English

[1 Used best surname-trained DT

[1 8000 word subset from Switchboard
lexicon as test data

1 Word error rate 83%!!!
Pruning makes no difference

] Letter-to-sound mapping for names is
radically different from general English

[1 Issue — can a single tree be trained for
both types of data?
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Conclusions

[1 Decision tree systems perform better —
38% error

[1 Generation of multiple pronunciations will
further improve error rate

1 Highly nonlinear letter-to-phone maps —
need more data for effective training

[1 Future plans — extend DT application to
general English

[1 Public domain resources — DT toolkit,
pronunciation dictionary
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