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	* Proper nouns and errors in LVCSR
	* Pronunciation networks needed
	* Direct letter-to-sound rules do not apply
	* Rule-based systems are unsuitable, NN-based systems do not work
	* Classify groups of letters into phonemes using nonlinear stochastic models
	* Statistical neural networks fail to generalize�on large data sets
	* Combine heuristics and statistics
	* Ideally suited for nonlinear classification
	* Classification based on data attributes
	* Recursively partition data into groups
	* Overfitting data — tree pruning
	* Information theoretic basis for splitting, stopping, and pruning
	* Capture complex relationships
	* Used to design “questions” at each node
	* Bayesian splitting
	— maximize�a posteriori class likelihoods
	* Information gain splitting
	— maximize the information gain
	* Information gain ratio splitting
	— maximize information gain normalized by the total information in split
	* Maximum entropy splitting
	* Collapse subtree into a terminal node if it results in lower predicted error
	* Cost-complexity — trade off tree size and error rate
	* Pessimistic pruning — statistical error estimates at node adjusted as per bias
	* Limitations of existing free software
	— small number of classes
	— number and values of attributes
	— restrictions on class labels
	— not amenable to text-based processing
	* ISIP DT toolkit allows user-defined criteria for splitting, pruning, and stopping
	* Data tagging allows selective attribute usage without reformatting
	* Train DT on name-pronunciation pairs
	* Sliding window of letter context
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	* 18494 surnames, 25648 pronunciations
	* Worldbet phonetic convention to handle multilingual data
	* Hand-transcribed pronunciations
	* Automatic�letter-to-phoneme alignment
	* Public domain resource
	* Training set of 15000 names (3494 names held out for testing)
	* Three such partitions for cross-validation of results
	* Context lengths of 3, 5 and 7
	* Binary univariate tree, single (1-best) pronunciation�output
	* Bayesian and gain ratio splitting
	* Pessimistic pruning
	DT1 — Gain ratio
	DT2 — Bayesian
	BM — Boltzmann NN
	RNN — Recursive NN
	* DTs try to model letter context-to-sound relationship�
	* As context size increases
	— closed loop performance improves
	— open loop performance decreases due to overfitting
	* Extremely confusible classification space
	* Performance of both splitting criteria is comparable
	* Pruning only helps marginally
	* Used best surname-trained DT
	* 8000 word subset from Switchboard lexicon�as test data
	* Word error rate 83%!!!
	* Pruning makes no difference
	* Letter-to-sound mapping for names is radically�different from general English
	* Issue — can a single tree be trained for both types of data?
	* Decision tree systems perform better — 38% error
	* Generation of multiple pronunciations will further improve error rate
	* Highly nonlinear letter-to-phone maps — need more data for effective training
	* Future plans — extend DT application to general English
	* Public domain resources — DT toolkit, pronunciation dictionary
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