AN EFFICIENT PUBLIC DOMAIN LVCSR DECODER

Neeraj Deshmukh, Aravind Ganapathiraju, Jonathan Hamaker, Joseph Picone

Institute for Signal and Information Processing
Department for Electrical and Computer Engineering
Mississippi State University, Mississippi State, MS 39762
{deshmukh, ganapath, hamaker, picone}@isip.msstate.edu

ABSTRACT sequences becomes quite large even for a small
vocabulary, especially with a trigram language model
The high cost of developing core technology in speeclfLM) and cross-word triphones. Efficient
recognition highlights the need for freely availableimplementation of the control structure required to
state-of-the-art software. We have released an initigherform this search within reasonable system
version of an LVCSR decoder that supports crossresources is quite challenging.
word context-dependent phone modeling and lattice
rescoring. The core search engine uses a variation @fs a result, good decoders are always proprietary; and
the Viterbi algorithm to efficiently manage word, the investment to develop or license such quality
phone and state-level hypotheses. The decodeoftware is prohibitive. This ultimately discourages
employs lexical trees to handle multiple the rate of progress in speech research. One way to
pronunciations of words, and also supports generalecrease the overall cost of STT research is to use the
network decoding. Preliminary evaluations on thelnternet as a means to pool resources and provide
WS’97 dev test partition of SWITCHBOARD (SWB) access to the fundamental technology. The decoder
yielded a 46.1% WER. The decoder is also shown t@resented here is part of such an Internet-based STT
be competitive in computational requirements. toolkit currently under development at the Institute for
Signal and Information Processing (ISIP).
1. INTRODUCTION
2. THE ISIP DECODER

A large vocabulary speech-to-text (STT) system
consists of three main components. Firsta@oustic A state-of-the-art public domain decoder needs to
subsystenconverts the speech signal into a sequencefficiently and transparently handle tasks of varied
of feature vectors typically modeled using Hiddencomplexity, from connected digits to spontaneous
Markov Models (HMMs). Next, adinguistic conversations. Therefore the current release of the
component constrains the choice of the next wordSIP decoder is equipped to handle decoding of
given a sequence of previously recognized wordscross-word triphones and n-gram language models. It
Finally, thedecoderfinds a word sequence that handles multiple pronunciations of words and large
maximizes the likelihood of the observed acoustidexicons easily through dynamically constructed
evidence by searching through a large word graph. Ifexical pronunciation trees. It can also efficiently
Bayesian statistical framework, the search problentescore lattices generated using a previous search.

can be summarized as
2.1. System Structure

w, = argmaxP(V\}t|Ot) The implementation of the ISIP decoder is based on a
i , (1) hierarchical variation of the standard Viterbi-style
= argmaxROy|Wy) P(W))/ P(O)) time-synchronous search paradigm [1]. At each frame

of the utterance being decoded, the system maintains
For a state-of-the-art LVCSR system, the pathcomplete history for each active path at each level in
calculations for decoding involve traversing through athe search hierarchy via special scoring data structures
hierarchy of graphs (sentences, words, phones, ar(dharkers). Each path marker keeps its bearings in the
HMM states). Also, the number of possible word search space hierarchy by indexing the current lattice

2.3. Lexical Trees
f Hello Joe Sentence level N
Hello Jon @ The ISIP decoder uses lexical trees to represent the
Word level @ pronunciations of all words following a particular
(Word graph) o node in the lattice. A lexical tree is created only when
oW ‘ the predecessor lattice node is reached in the

|—>-ow—>8—>jh Phone level decoding process, and is shared by multiple instances

20— (Lex tree) of that lattice node. A lexical tree no longer actively

\ used for decoding is pruned away to save memory.

Model & ; ; ; ;
\ state level ._)@_)Q_)@_).j Each lexical tree node is associated with a

monophone in the pronunciation of the words (see
Figure 1: lllustration of the hierarchical representation of Figure 1). The node also contains the maximum LM
the search space in the ISIP decoder. score of all the words covered by that node. This
score is used for efficient LM look-ahead [3] and
node, lexical tree node and the triphone model. It also gppended to the path score temporarily for the sake of
maintains the path score and a baCk—pOinter to |tS pruning Comparisons_ Once a terminal node is
predecessor. reached, the identity of the word is unique and the

_ _ _ , actual word LM score is added to the path score.
Figure 1 illustrates the hierarchical framework of the

search space. For instance, at each instantiation of az 4. Dynamic Triphone Generation

triphone, a state-level path marker is projected from

the previous phone-level marker and added to a state-Triphones are generated dynamically by traversing

level list of path markers. For each frame, the active the lexical tree nodes at each step as illustrated in
states are evaluated only once. The state-level Figure 1. Cross-word triphones are created by

markers are compared and the best marker for eachgrowing (if necessary) the lexical tree corresponding

different instance of the state is projected to the next to the lattice node containing the currently evaluated

states as governed by the state transition probabilitiesword. This reduces the required tree size and

(Viterbi decoding). The score for each state is stored facilitates creation of triphones on an as needed basis.
locally and added to the projected path marker score.

A marker exiting the model is added to the phone- 2.5. Path Merging

level marker list and used to project the next triphone
markers. Similarly, phone-level path markers at end
of words are promoted to the word level and used to
project paths into the subsequent words.

If all paths in the search space are allowed to grow
independently, the computational load on the decoder
increases exponentially with time. By sharing the
evaluation of similar parts of different hypotheses the
2.2. Lattice Compaction decoder can prevent the computational overload.
Hypotheses with the same acoustic and linguistic
During lattice rescoring, it is fairly standard practice context (as determined by the position in the lattice
to ignore the timing information associated with the and lexical tree hierarchy) have identical futures, and
lattice nodes and treat the lattice as a word graph therefore can be merged into one. Here only the
constraining the search space. In this case, many arcshighest-scoring path marker is propagated for each
of the lattice indicate essentially the same word triphone instance at such points (such as word ends).

sequence and need not be decoded individually [2].
2.6. Pruning

The ISIP decoder compacts the original lattice o _ ,
(usually by a factor of 2 to 5 for SWB lattices) into a WO heuristic pruning techniques are employed to
word graph that preserves all the word hypotheses, Prevent evaluation of low-scoring hypotheses.

yet merges all such duplicate arcs. This causes a
significant drop in the search space complexity at
minimal computational overhead.

Beam pruning The ISIP decoder allows the user to
set a separate beam at each level in the search

hierarchy. The beam width at each level is determined /_ “
empirically, and the beam threshold is computed with e = — @
respect to the best scoring path marker at that level. - e D) -

For instance, if at a frame the best path scores at the ~— g
state, phone and word levels are respectively given by LD

Gl 0 = max s)}... 0 P——— —
OmaP:) = max{ d p 3} ...0p; 2) Ziii i DR SRS
OmadW:) = max{ d w }}...0Ow e SN EF

then for beam widths ob(s), b(p) andb(w) , the k /

decoder prunes all hypotheses which satisfy Figure 2: A screenshot of the graphical interface to the ISIP
decoder demonstration mode.

a(s 9 <dpafs D +b(s)
a(p, 9 <dmadp,) +b(p) . ©)
AW, 1) <0y, g{W, 1) + b(w)

4. EVALUATIONS

To gauge the performance of the ISIP decoder we ran
a detailed evaluation on the WS’97 dev test — a
subset of the SWB corpus. This evaluation set spans
1.56 hours of speech (2427 utterances, of durations
varying from 0.5s to about 15s). The acoustic models
were estimated using HTK on 60 hours of training
data, and are simple three-state left-to-right HMMs.
Each state is represented by a 12-mixture Gaussian
distribution with diagonal covariances. The lattices
were generated using HTK with around 10% inherent
WER. The HTK decoder HVite was used as baseline.

Maximum Active Phone Model Instance (MAPMI)
pruning: By setting an upper limit on the number of
active triphone instances per frame we can effectively
regulate the memory usage (and hence computation
time) of the decoder [4]. If the number of active
hypotheses exceeds this limiapmi_limit then only

the bestmapmi_limithypotheses are allowed to
continue while the rest are pruned off.

3. SOFTWARE DESIGN 4.1. Evaluation Results

The ISIP decoder is designed in an object-oriented A comparison of the ISIP decoder with the best

fashion and W”“ef‘ completely in C++. Eor _efﬁcient performance (with optimal pruning thresholds of 200,
access and sorting pUrposes _the principal data 150, 150, 2000 respectively for state, phone and
stfrfgqtures ar((ja rllan?cled via linked lists and hash tables'word-level beams and MAPMI, requires 72MB at
Efficient modules for memory management ensure most), as well as the fastest time (at 200, 50, 100, 500

that used memory is periodically freed and reusc_ad, pruning, 62MB) with the baseline system is shown in
thereby keeping the memory load on the system fairly Table 1. The best WER of 46.1% is slightly better

constant. The software structure representing thethan the baseline. Also, reducing the run time from

hierarchical framework of the search space is 30xRT to 10xRT raises the WER only by 31%
extensible to higher levels such as sentences. Also, '

hooks are provided to apply various kinds of acoustic 4.2 Effect of Pruning Strategies

distributions and introducing newer modules and

modalities (such as grammar decoding). The choice for the individual beam widths directly
affects the search space both in terms of recognition

The decoder also functions in a demonstration mode accuracy as well as CPU and memory requirements.

interfaced with a Tcl-Tk based graphical interface e studied the effect of various pruning strategies on

(Figure 2). It provides a frame-by-frame display of the decoder with a smaller test set of 300 utterances

the top word hypotheses, cross-word triphones and (see Figure 3). The decoder WER remains fairly
statistics on the path marker usage at different levels, constant till about 10 XRT on this set.

serving as a valuable debugging and educational tool.

ISIP Best ISIP Fastest HVite
Error (30xRT) (10xRT)
Type

WER | SER | WER | SER | WER | SER
Sub 31.4 66.2 | 38.7 717 | 31.1 66.8
Del 10.9 | 40.6 16.8 | 43.8 11.7 | 411
Ins 3.8 175 4.8 215 3.6 18.0

Total | 46.1 70.1 604 | 747 | 46.4 | 70.9

Table 1: The recognition performance of the ISIP decoder

(Ll)
O 65¢
=
& 55¢
45L. - - - -
5 10 15 20 25

k x RT

Figure 3: As the computation time decreases with tighter

on 2427 SWB utterances (the WS'97 dev test data). All pruning, the WER increases.

numbers indicate percent errors.

A combination of all pruning techniques was found
to be the most effective (see Figure 4). The MAPMI
pruning applies strict limits on the memory usage.
However, this does not result in a proportional drop
in execution time due to the fan-out caused by the
surviving word-end markers, as well as the
computational overhead. Beam pruning provides a
more direct control at each level (e.g. word-level
pruning with a tighter beam to curb the LM fan-out).

~\

50g 20 20 60 80

_ xRT %

5. CONCLUSIONS Figure 4: Effect of pruning on memory and CPU usage in
the ISIP decoder on a sample test utterance. The start-up

We have introduced a new, public domain state-of-
the-art decoder for LVCSR that is competitive in
terms of both recognition performance as well as [2]
CPU and memory consumption. The best WER on
the WS’97 dev-test set was 46.1%, better than the
baseline decoder. We also studied in detail the effect

of various pruning strategies on performance, and
found that a combination of all four heuristics works
best for this task. Moreover, a speed-up from 30xRT [3]
to 10xRT resulted in a 31% increase in WER.

The decoder source code can be downloaded from
[5]. Future steps towards converting this decoder into
a STT toolkit will include grammar-based decoding,

memory needed for loading models and lexicon is 48MB.

H. Murveit, J. Butzberger, V. Digalakis and

M. Weintraub, “Progressive-Search Algorithms
for Large-Vocabulary Speech Recognition”, in
Proceedings of the DARPA Human Language
Technology Worksheplarch 1993.

S. Ortmanns, H. Ney and A. Eiden, “Language
Model Look-ahead for Large Vocabulary Speech
Recognition”, in Proceedings of the Fourth
International Conference on Spoken Language
Processingpp. 2095-2098, October 1996.

N-best search and lattice generation, acoustic featurel4] J. J. Odell, V. Valtchev, P. C. Woodland and

extraction and HMM training.
REFERENCES

[1] S.J. Young, N. H. Russell and J. H. S. Thornton,
“Token Passing: A Simple Conceptual Model for [5]
Connected Speech Recognition Systems”,
Cambridge University Engineering Department
Technical Report CUED/F-INFENG/TR.38
Cambridge University, 1989.

S. J. Young, “A One-Pass Decoder Design for
Large Vocabulary Recognition”, ifProceedings
of the DARPA Human Language Technology
Workshop pp. 405-410, March 1995.

N. Deshmukh, A. Ganapathiraju, J. Hamaker and
J. Picone, “Large Mocabulary Conversational
Speech Recognition”, http://www.isip.msstate.
edu/resources/technology/projects/1998/speech_
recognition/ Mississippi State University, 1998.

	Figure�1:�� Illustration of the hierarchical representation of the search space in the ISIP decoder.
	Figure�2:�� A screenshot of the graphical interface to the ISIP decoder demonstration mode.
	Figure�3:�� As the computation time decreases with tighter pruning, the WER increases.
	Figure�4:�� Effect of pruning on memory and CPU usage in the ISIP decoder on a sample test uttera...
	Table 1: The recognition performance of the ISIP decoder on 2427 SWB utterances (the WS’97 dev te...
	AN EFFICIENT PUBLIC DOMAIN LVCSR DECODER
	Neeraj Deshmukh, Aravind Ganapathiraju, Jonathan Hamaker, Joseph Picone
	Institute for Signal and Information Processing
	Department for Electrical and Computer Engineering
	Mississippi State University, Mississippi State, MS 39762
	{deshmukh, ganapath, hamaker, picone}@isip.msstate.edu

	ABSTRACT
	1.�� INTRODUCTION
	(1)

	2.�� THE ISIP DECODER
	2.1.�� System Structure
	2.2.�� Lattice Compaction
	2.3.�� Lexical Trees
	2.4.�� Dynamic Triphone Generation
	2.5.�� Path Merging
	2.6.�� Pruning
	; (2)
	. (3)

	3.�� SOFTWARE DESIGN
	4.�� EVALUATIONS
	4.1.�� Evaluation Results
	4.2.�� Effect of Pruning Strategies

	5.�� CONCLUSIONS

	REFERENCES
	[1] S.�J.�Young, N.�H.�Russell and J.�H.�S.�Thornton, “Token Passing: A Simple Conceptual Model f...
	[2] H.�Murveit, J.�Butzberger, V.�Digalakis and M.�Weintraub, “Progressive-Search Algorithms for ...
	[3] S. Ortmanns, H. Ney and A. Eiden, “Language Model Look-ahead for Large Vocabulary Speech Reco...
	[4] J.�J.�Odell, V.�Valtchev, P.�C.�Woodland and S.�J.�Young, “A One-Pass Decoder Design for Larg...
	[5] N.�Deshmukh, A.�Ganapathiraju, J.�Hamaker and J.�Picone, “Large Vocabulary Conversational Spe...

