
BENCHMARKING OF FFT ALGORITHMS *
T
g

h
s

m
f

it
o
e

ic
rc
s

th
r

s

y
i
t

.
ety
te a
r a
g

s

ch
4

nto
e
x

a
ix
-4

s
in

d
in
l
al
r

Michael Balducci, Aravind Ganapathiraju,
Jonathan Hamaker, Joseph Picone

Department of Electrical and Computer Engineering
Mississippi State University

Mississippi State, Mississippi 39762, USA
Ph (601) 325-3149 - Fax (601) 325-3149

{ganapath, hamaker, picone}@isip.msstate.edu

Ajitha Choudary, Anthony Skjellum

Department of Computer Science
Mississippi State University

Mississippi State, Mississippi 39762, USA
Ph (601) 325-8435 - Fax (601) 325-8997

{ajitha, tony}@cs.msstate.edu
Abstract - A large number of Fast Fourier Transform
(FFT) algorithms have been developed over the years.
Among these, the most promising are the Radix-2,
Radix-4, Split-Radix, Fast Hartley Transform (FHT),
Quick Fourier Transform (QFT), and the Decimation-
in-Time-Frequency (DITF) algorithms. In this paper,
we present a rigorous analysis of these algorithms that
includes the number of mathematical operations,
computational time, memory requirements, and object
code size. The results of this work will serve as a
framework for creating an object-oriented, poly-
functional FFT implementation which will
automatically choose the most efficient algorithm given
user-specified constraints.

INTRODUCTION

Though development of the Fast Fourier Transform (FF
algorithms is a fairly mature area, several interestin
algorithms have been introduced in the last ten years t
provide unprecedented levels of performance. The fir
major breakthrough was the Cooley-Tukey algorith
developed in the mid-sixties which resulted in a flurry o
activi ty on FFTs [2]. Further research led to the
development of the Fast Hartley Transform, and Spl
Radix algorithm. Recently, two new algorithms have als
emerged: the Quick Four ier Transform and th
Decimation-in-Time-Frequency algorithm.

While there has been extensive research on the theoret
efficiency of these algorithms, there has been little resea
to-date comparing these algorithms on practical term
Architectures have become quite complex today wi
multi-level caches, super-pipelined processors, long wo
instruction sets, etc. Efficiency, as we will show, i
intricately related to how an algorithm can be implemente
on a given architecture. The issues to be considered inclu
computation speed, memory, algorithm complexit
machine architecture, and the compiler design. In th
paper, we report on preliminary work to find the mos
wo
is

* This work was supported by DARPA through US Air Force’s Rome Lab-
oratories under contract F30602-96-1-0329.
)

at
t

-

al
h
.

d

d
de
,
s

efficient algorithm under application-specific constraints
Our approach is to benchmark each algorithm under a vari
of constraints, and to use the benchmark statistics to crea
wrapper capable of choosing the algorithm best suited fo
given application. Obviously, object-oriented programmin
methodologies will play a large role.

ALGORITHMS

The definition of the Discrete Fourier Transform (DFT) i
shown in (1).

(1)

Most of the algorithms take the divide-and-conquer approa
to reduce computat ions. The Radix-2 and Radix-
approaches decompose the N-point DFT computations i
sets of two and four-point DFTs, respectively [2]. The cor
computation in a Radix-4 butterfly involves fewer comple
multiplications than the Radix-2 butterfly, yielding an
increase in efficiency when the order of the transform is
power of 4. To take advantage of this fact, the Split-rad
algorithm makes use of both the Radix-2 and Radix
decomposition [3].

The Hartley Transform, shown in (2), further reduce
computation by replacing the complex exponential term
the DFT with a kernel using real variables [4].

(2)

This reduces the number of real multiplications an
additions, with only a modest gain in memory. The ma
drawback of the Hartley Transform is the additiona
computation needed to transform the results from the re
Hartley coefficients to the standard complex Fourie
coefficients. However, since the relationship between the t
forms of coefficients is linear, the additional cost incurred

X k() xne

j2πkn–
N

n 0=

N 1–

∑=

XH k() 1

N
-------- xn

2πkn
N

------------- 
 cos

2πkn
N

------------- 
 sin+

n 0=

N 1–

∑=

o
l
n
is

m

n
is
o

e
ty
b
a
e
x

r
l
r
o
o
i
r
re
s
n
O
e

re
b
t
l

fo
t.
e
e

th
i
a

e
as
his
of

s
ns
nt
s.
e
t

de

e
for
ld
to
ns
he
e
der
of

s
atic

n
e
s
by

of
ens

in
less than the efficiency gained.

The Quick Fourier Transform (QFT) uses the symmetry
the cosine and sine terms to reduce the number of comp
calculations [5]. The QFT breaks a signal into its even a
odd components. A Discrete Cosine Transform (DCT)
used on the even samples to calculate the real portions
the Fourier coefficients, while a Discrete Sine Transfor
(DST) is used on the odd samples to compute th
imaginary portions. Both the DCT and DST are in tur
computed recursively. An important aspect of the QFT
that all complex operations occur at the last stage
recursion, making it well-suited for real data.

Finally, the Decimation-In-Time-Frequency (DITF)
algorithm leverages the Radix-2 approach in both th
time-domain (DIT) and frequency (DIF). The DITF is
based on the observation that the DIT algorithm has
majority of its complex operations towards the end of th
computation cycle and the DIF algorithm has a majori
towards the beginning. The DITF makes use of this fact
performing the DIT at the outset and then switching to
DIF to complete the transform. Combining thes
algorithms comes at the cost of computing comple
conversion factors at the transition stage [6].

EVALUATION METHODOLOGY

Criteria: Computation speed was selected as the co
criteria for comparison since the fastest method is genera
the most desirable one. However, the amount of memo
available is not unlimited; therefore, memory was als
included as a measure of efficiency. The number
mathematical operations is also important since it
directly related to the computation time and the hardwa
requirements. The additions and multiplications we
broken into floating-point and integer operations becau
floating point operations are more costly in computatio
time than are integer operations (on most hardware).
course, all of this is mitigated by the degree to which th
compiler can perform optimizations. Modern compilers a
able to optimize code for speed and hardware usage
such techniques as loop-unrolling, delayed-branching, e
The level of optimization performed on an algorithm wil
be highly algorithm and implementation dependent.

Implementation: Bearing in mind the evaluation criteria,
we designed a class structure that is intuitive and allows
easy inclusion of new algorithms to the existing se
Computation speed is measured using system utiliti
accurate to . For evaluation of memory usage, w
developed floating-point and integer classes that have
features of accumulating a count for every variable that
declared and counting the number of mathematic

1 ms
f
ex
d

of

e

f

e

a

y

e
ly
y

f
s
e

e

f

operations. This gives a very efficient method for viewing th
dynamic memory usage. An iterative approach to testing w
also used to reduce the transients of processor loading. T
method involved running each test for a large number
iterations, using median values for comparison.

RESULTS

An often used criterion for comparison of FFT algorithm
thus far has been the number of mathematical operatio
involved. These statistics usually do not, however, accou
for the cost of incrementing integer counters and indice
Integer operations can be a significant portion of th
computation time. Operation counts for a 1024-poin
complex FFT is presented in Table 1. Most algorithms tra
floating-point operations for integer operations.

A criterion closely related to the number of operations is th
computation speed. A summary of the computation times
the selected algorithms is shown in Table 2. One wou
expect the algorithm with the least number of operations
be the fastest. However, we show that compiler optimizatio
play a large role by virtue of the large difference between t
FHT and all other algorithms. It is interesting to note that th
difference in performance tends to decrease as the or
increases. As the order increases in the FHT, the cost
converting the Hartley coefficients to Fourier coefficient
seems to becomes substantial, explaining the less dram
difference in performance.

It is a well-known fact that most FFT algorithms achieve a
complexity. The constants of proportionality ar

what differentiates the performance of the algorithms. A
shown in Table 2, second-order effects can be dominated
compiler efficiency. For lower orders the FHT algorithm in
its present implementation seems to be making better use
the cache than the other algorithms. This advantage flatt
out as the order increases, though.

O N Nlog[]
y
c.

r

s

e
s
l

Table 1. Comparison of mathematical operations involved
a 1024-point complex FFT.

Algorithm
Float
Mults

Float
Adds

Int
Mults

Int
Adds

Bin
Shifts

RAD-2 20480 30720 0 15357 1024

RAD-4 15701 28842 336 8877 2738

SRFFT 10016 25488 502 12448 2937

FHT 18704 32056 0 8367 4246

QFT 8448 31492 16 70058 316

DITF 16640 28800 1076 18839 1086

i
r

n
a
to
e
e
a

to
a
o

t
he
T
he,
it
s
ed
the
n
on

ns
of
the
e
er

t
ts.
, it
of

e
ed
m

nce
ce

,”

r
e

Another common design criterion in practical systems
memory. Algorithm efficiency can always be traded fo
memory and code size. Table 3 illustrates this fact.

CONCLUSIONS

We have presented results on a comprehensive collectio
FFT algorithms, each of which was programmed in
similar framework. We have generated statistics
supplement the mathematical formulation for th
complexity of these algorithms. Combined, this data giv
the developer a clear picture of the computation
requirements of each algorithm.

At our current level of implementation, the FHT appears
be the best overall algorithm. It is interesting to note th
the higher number of mathematical operations does n
necessarily translate into a reduction in speed. The FH
c
t

s

of

s
l

t
t

T

requires a marginally higher number of floating-poin
operations than the Radix-4, yet the FHT is faster than t
Radix-4 by more than a factor of 2. This implies that the FH
makes more efficient use of the resources available (cac
pipelining, etc.) than does the Radix-4. Also, this makes
even more important to look at the order of operation
because multiplications and additions that can be pipelin
need much less computation time than algorithms where
flow of operations cannot be easily pipelined. This is a
especially important consideration for the current generati
of complex architectures (such as the Pentium Pro chip).

We also see that, in general, the number of integer additio
is a good indication of speed. Note that the ranking
algorithms by speed is almost the same as the ranking of
algorithms by integer additions. The only exception is th
QFT that seems to make up for the high number of integ
operations by using very few floating-point multiplications.

Our work has laid the foundation for an “intelligent”
environment which will automatically choose the bes
algorithm and execute it for a given set of user constrain
As the hardware available is becoming more specialized
becomes imperative that the software take full advantage
the hardware capabilities. In the future, our work will b
extended to parallel processing environments. Detail
documentation of our experiments can be downloaded fro
http://www.isip.msstate.edu/software/parallel_dsp.

ACKNOWLEDGEMENTS

We gratefully acknowledge the suggestions and assista
given by Shane Hebert of ICDCRL in the Computer Scien
Department at Mississippi State University.

REFERENCES

[1] J.W. Cooley and J.W. Tukey, “An Algorithm for
Machine Computation of Complex Fourier Series
Math. Comp., vol. 19, pp. 297-301, April 1965.

[2] C.S.Burrus and T.W.Parks,DFT/FFT and Convolution
Algorithms: Theory and Implementation, John Wiley
and Sons, New York, NY, USA, 1985.

[3] P. Duhamel and H. Hollomann, “Split Radix FFT
Algorithm,” Electronic Letters, vol. 20, pp. 14-16, Jan.
1984.

[4] R. Bracewell, The Hartley Transform, Oxford Press,
Oxford, England, 1985.

[5] H. Guo, G.A. Sitton, and C.S. Burrus, “The Quick
Discrete Fourier Transform,”Proc. of ICASSP,vol. III,
pp. 445-447, Adelaide, Australia, April 1994.

[6] A. Saidi, “Decimation-In-Time-Frequency FFT
Algorithm.” Proceedings of ICASSP,vol. III, pp. 453-
456, Adelaide, Australia, April 1994.

r
c

a

Table 2. Comparison of computation speed [in] fo
varying FFT orders on a 200 MHz processor UltraSpa
machine compiled using gcc with optimization level 3. Th
reported speeds are median values over 1000 iterations.

FFT Order

Algorithm 64 256 1024 4096 16384

RAD-2 238 952 3952 17857 77714

RAD-4 191 762 3476 14714 60333

SRFFT 238 905 3810 17429 74524

FHT 48 286 1333 7143 31905

QFT 143 762 3476 15952 78000

DITF 238 1000 4191 18714 80333

µsec
Table 3. Comparison of memory usage [in bytes] for
1024-point complex FFT on a 200 MHz UltraSpar
compiled using gcc with optimization level 3. Note tha
peak memory requirements are shown.

Algorithm Memory Object Size

RAD-2 24616 1740

RAD-4 8344 2020

SRFFT 24656 2232

FHT 32832 4812

QFT 49152 7520

DITF 24616 3060

	Michael Balducci, Aravind Ganapathiraju, Jonathan Hamaker, Joseph Picone
	Department of Electrical and Computer Engineering
	Mississippi State University
	Mississippi State, Mississippi 39762, USA
	Ph (601) 325-3149 - Fax (601) 325-3149
	{ganapath,�hamaker,�picone}@isip.msstate.edu

	BENCHMARKING OF FFT ALGORITHMS*
	INTRODUCTION
	ALGORITHMS
	(1)
	(2)

	EVALUATION METHODOLOGY
	RESULTS
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES
	[1] J.W.�Cooley and J.W.�Tukey, “An Algorithm for Machine Computation of Complex Fourier Series,”...
	[2] C.S.Burrus and T.W.Parks, DFT/FFT and Convolution Algorithms: Theory and Implementation, John...
	[3] P.�Duhamel and H.�Hollomann, “Split Radix FFT Algorithm,” Electronic Letters, vol. 20, pp. 14...
	[4] R. Bracewell, The Hartley Transform, Oxford Press, Oxford, England, 1985.
	[5] H.�Guo, G.A.�Sitton, and C.S.�Burrus, “The Quick Discrete Fourier Transform,” Proc. of ICASSP...
	[6] A.�Saidi, “Decimation-In-Time-Frequency FFT Algorithm.” Proceedings of ICASSP, vol.�III, pp.�...

	Ajitha Choudary, Anthony Skjellum
	Department of Computer Science
	Mississippi State University
	Mississippi State, Mississippi 39762, USA
	Ph (601) 325-8435 - Fax (601) 325-8997
	{ajitha,�tony}@cs.msstate.edu
	Table 1.�� Comparison of mathematical operations involved in a 1024-point complex FFT.
	Table 2.�� Comparison of computation speed [in] for varying FFT orders on a 200 MHz processor Ul...
	Table 3.�� Comparison of memory usage [in bytes] for a 1024-point complex FFT on a 200�MHz UltraS...

