Efficient Search Strategies in Hierarchical Pattern Recognition Systems

by

Neeraj DeshmukhJoseph PiconeYu-Hung KaoDept. of EEInst. for Signal & Info. Proc.Systems & Info. Sci. Lab.Boston UniversityMississippi State UniversityTexas Instruments Inc.Boston, MA 02215MS State, MS 39762Dallas, Texas 75243neeraj@engc.bu.edupicone@ee.msstate.eduyhkao@csc.ti.com

SSST, '95

March 13, 1995

The Problem of Statistical Pattern Recognition

 \blacklozenge Mathematical representation

 $p(\widehat{W}/A) = \max_W p(W/A)$

Bayes' Theorem:

$$p(\widehat{W}/A) = \arg\max_{W} p(A/W)p(W)$$

♠ Automatic Speech Recognition

- Acoustic Model
- Language Model
- \bullet Search

♠ Hidden Markov Models

- $\clubsuit \text{ Complex Applications} \Rightarrow \text{Hierarchical Modeling}$
 - Large Vocabulary Continuous Speech Recognition (LVCSR)
 - Target recognition in radars, SAR imagery
 - Intelligent database access (audio-video)

Speech Recognition System

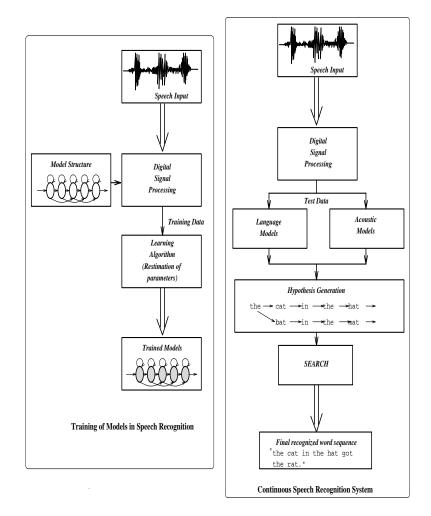


Figure 1: Training and Recognition

Schematic of training and recognition systems

Search Strategies

♦ Search Paradigm

To choose a pattern with the highest likelihood score for our feature models given the observed data.

Motivation

The number of hypotheses (choices for the correct pattern) grows exponentially with number of feature models. Hence a strategy that saves on computation and storage requirements is sought.

• Popular search techniques

- Viterbi Search
- Viterbi Beam Search
- A^{*} Stack Decoding
- N-best Search
 - \triangleright Maintains *all* hypotheses within specified beam.
 - \triangleright Propagates top N hypotheses at each state.
 - \triangleright N is independent of Viterbi beam.
 - \triangleright Tool to integrate information from multiple sources.
 - \triangleright Partial towards shorter hypotheses.
- Generalized N-best Search
 - \triangleright Forward-Backward Search
 - \triangleright Progressive Lattice Search

Application to Hierarchical Systems

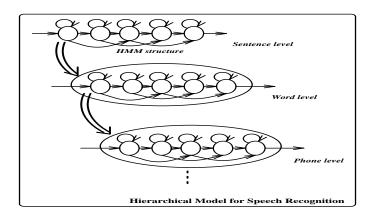


Figure 2: Hierarchical structure of feature models

- ♠ Multi-level computation.
- ♠ Information flow both across and along layers of model framework.
- \blacklozenge Excessive requirements on computation and storage capacity.
- ♠ For N-best, N different paths are to be traced back \Rightarrow degradation of performance of Viterbi search.
- ♠ Integration of different N-best hypotheses obtained from different levels.

Frame-Synchronous Viterbi Search

♠ Motivation

Reduce computational and memory requirements by limiting the number of valid hypotheses to be processed.

♠ FSVS Algorithm

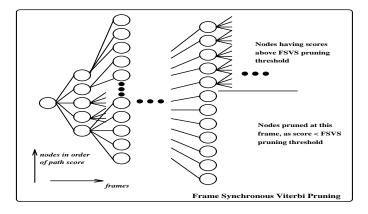


Figure 3: FSVS pruning algorithm

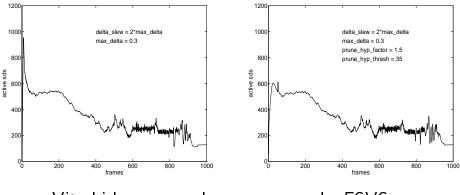
During Viterbi beam search, at the end of each frame of input data

- 1. Sort all active hypotheses in decreasing order of scores.
- 2. Keep only a few top-scoring hypotheses based on some pruning threshold. This threshold can be fixed or dynamic, depending on the application.

Practical Issues

♠ Computational overhead

♠ The perils of over-pruning


♠ Goal: Generalized N-best Algorithm

- should identify models associated with output symbols.
- should keep N highest scoring paths for such models at every level in the model hierarchy.
- should trace all these paths to obtain N best hypotheses at the top level.
- The generalized N-best search for a hierarchical system thus maintains N-best hypotheses at **every** level and not only at the top.

♠ Advantages

- Reduction in problem space
- Very useful in memory-critical applications
- Some gain in computational efficiency

Experimental Results

a: Viterbi beam search b: FSVS

Figure 4: Memory usage for (speech) sentence recognition

Туре	Sent.	Comptn.	Mem.	Word	Sent.
of	over	(fracn of	slots/	error	error
pruning	flow	realtime)	frame	%	%
Viterbi	308	0.289	590	24.2	36.1
FSVS	0	0.274	424	3.5	21.2

Results of Frame-Synchronous Viterbi Search

Summary

- Hierarchical pattern recognition systems are required to solve complex pattern matching applications.
- ♠ Such systems have excessive requirements of memory and computational power for search.
- Frame-synchronous Viterbi Search algorithm is a step in reducing the problem space.
- ♠ FSVS algorithm is particularly attractive to memorycritical recognition tasks.