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Abstract

We describe the generalized N-best search algorithm
as applied to hierarchical pattern recognition, and dis-
cuss its limitations for a broad class of problems. We
then introduce a new algorithm, called the Frame-
Synchronous Viterbi Search, that prunes hypotheses
by actively organizing system memory after each step
in the search. This algorithm is shown to save mem-
ory and computation for a speci�c class of problems
involving large search spaces and small memory re-
sources. We also discuss generalizations of this al-
gorithm to provide true N-best scoring and intelligent
pruning while preserving the hierarchical structure of
the hypotheses. Example of a practical speech recogni-
tion system using this algorithm will be given.

1 Introduction

The statistical approach to pattern recognition ex-
ploits the statistical relationships among various fea-
tures in a pattern W . The features are modeled using
probabilistic distributions and the available data or
observations A are compared with these models. The
recognition system generates a number of potential so-
lutions or hypotheses with the objective of maximizing
the probability of occurrence of W given A. The ob-
servation Ŵ corresponding to the highest probability
score is then chosen as the recognized pattern.

p(Ŵ=A) = max
W

p(W=A): (1)

We �rst estimate the correct parameter values for
our models by maximizing p(W=A) over a known
database of observation sequences. This is called
\training" in speech recognition. During training, the
recognizer also performs an automatic segmentation
of data to determine the beginning and end of par-
ticular features. This enables the system to continue
processing all hypotheses from the previous frame of
data while restarting hypotheses from the top in the

current frame. All of these result in an increase in the
computational complexity of the system which now
rises non-linearly with the duration of features.

Over the years Hidden Markov Models (HMMs)
have evolved as the prime tool for modeling of fea-
tures in a variety of pattern recognition problems. The
popularity of HMMs lies in the availability of compu-
tationally e�cient algorithms for both training and
decoding. As HMMs have been applied to more com-
plex recognition tasks, more e�cient methods of mod-
eling and search have necessitated for practical imple-
mentations. An upshot of this are systems that use
a hierarchy of models for di�erent levels of features.
Each level of such systems is implemented as an HMM
where the states of one level consist of HMMs of the
previous level [Figure 1]. For example, in a continuous
speech recognition system, sentences can be developed
in terms of words, words in terms of phonemes etc.

Viterbi search is an e�cient decoding technique to
use with HMM-based models, but it is inadequate to
handle situations where multiple hypotheses need to
be passed on to another system. Recently, N-best
search has emerged as a viable solution for such sys-
tems. We will now discuss these decoding strategies
and their role in hierarchical pattern recognition sys-
tems. We then propose a frame-synchronous search
algorithm to facilitate application of N-best search in
hierarchical systems.

2 Search Techniques in Pattern Recog-
nition

In pattern recognition the search paradigm chooses
a pattern that has the highest likelihood for our fea-
ture models given the observed evidence. The number
of possible hypotheses grows exponentially with the
number of feature models, and imposes formidable re-
quirements of computation and storage capability on
the decoding implementation. Therefore techniques
that save on computation by modifying the search
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Figure 1: Hierarchical HMM network for recognition

space are vital from an implementation perspective.
Such modi�cations cause the system to make sub-
optimal decisions, but these are known not to a�ect
the accuracy of recognition signi�cantly. A few popu-
lar techniques are briey described here.

2.1 Viterbi Beam Decoding

The recognition system can be treated as a re-
cursive transition network composed of the states of
HMMs in which any state can be reached from any
other [Figure 1]. The Viterbi search algorithm [6]
builds a breadth-�rst search tree out of this network.
Each state of the model is updated as the input data is
processed frame by frame. At each frame all hypothe-
ses are compared and only those having scores above
a threshold value are allowed to continue forward.

The computational requirements of Viterbi search
are proportional to the number of states of the model
and the number of frames of data. Though its time-
synchronous nature allows for comparison of compet-
ing hypotheses at any frame, this results in evaluation
of a state model at every occurrence of the correspond-
ing feature and represents superuous computation.

2.2 Stack Decoding

Stack decoding [4] is a depth-�rst technique that
maintains a sorted stack of most likely hypotheses. It
e�ectively combines all available information into a
single uni�ed one-pass search. Fast match algorithms
can be easily incorporated with stack decoding to ad-
vance the best hypothesis more e�ciently. However, it
su�ers from problems of convergence and robustness.

2.3 N-Best Search

The optimal N-best decoding algorithm [1] is quite
similar to the Viterbi decoder. However, N-best search
�nds all hypothesis sequences within the speci�ed
beam. It keeps track of hypotheses with di�erent his-
tories at each state. It then allows only the top N

hypotheses to be retained for further processing. This
state-dependent pruning is independent of the global
Viterbi beam threshold.

The N-best search paradigm has found use in a va-
riety of applications to incorporate information from
various sources into a single framework. Knowledge
sources that provide more constraint at a lesser cost
are used to guide the initial search to generate the
list of top N hypotheses. These hypotheses can later
be re-evaluated with other, more expensive knowledge
sources to arrive at the best hypothesis.

N-best search has the advantage of using only a sub-
set of the available information to reduce the search
space. However, in its pure form it has the aw of be-
ing partial to shorter hypotheses. Also, most of the hy-
potheses picked in the �rst stage di�er onlymarginally,
and therefore result in much duplicated computation.
This is overcome by using some generalizing approxi-
mations.

3 Generalized N-Best Search

Several modi�cations to the exact N-best algorithm
[3] have been proposed in the continuous speech recog-
nition (CSR) problem to make it more e�cient and
accurate. These modi�cations allow for some approx-
imations and generate a list of sentence hypotheses
with much less computation. Such approximations
are justi�ed as long as the correct hypothesis is as-
sured to be in this list. Even if it does not hold a
very high rank in this preliminary list, the correct hy-
pothesis can be detected later by rescoring on other
knowledge sources.

3.1 Forward-Backward Search

Forward-backward search algorithms [5] use an ap-
proximate time-synchronous search in the forward di-
rection to facilitate a more complex and expensive
search in the backward direction. This generally re-
sults in speeding up the search process on the back-
ward pass as the number of hypotheses to be explored
is greatly reduced by the forward search. A simpli�ed
model is used to perform a fast and e�cient forward-
pass search in which the scores of all partial hypothe-
ses that fall above a threshold value are stored at every
state. Then a simple beam search is performed in the
backward direction. This uses more detailed models
and scores high on a hypothesis only if it had a corre-
spondingly good score on the forward pass.

3.2 Progressive Lattice Search

The progressive lattice search [2] is a generaliza-
tion of the N-best algorithm; instead of generating



an ordered list of hypotheses it generates a graph
or lattice of connected features. The size of this
lattice is controlled by the pruning threshold of the
initial search. This lattice is then iteratively scaled
down using a forward-backward word-life algorithm
that prunes away nodes belonging to hypotheses with
poor scores. This reduces the time required by the
backward pass while adjusting the size of the resul-
tant lattice.

3.3 Application to Hierarchical Systems

For pattern recognition systems using multi-level
representations of knowledge, application of above
search algorithms is not straightforward. Here the
information of the best path has to propagate not
only along but also across di�erent strata of models.
The Viterbi decoding scheme, being inherently 1-best,
can be implemented in this setup; but requires exces-
sive computations and large amounts of memory space
with no appreciable gain in performance. Moreover,
incorporating an N-best algorithm requires backtrac-
ing of N di�erent best paths and further degrades the
performance of the Viterbi search. Determination of
the value of N and the relative weights of the N-best
scores at di�erent levels constitute further problems
for optimization of the algorithm.

An obvious step in the direction of reducing com-
putational requirement is to optimize the process of
hypothesis generation itself and thus reduce the prob-
lem space. We propose a frame-synchronous Viterbi
search algorithm that attempts to achieve this.

4 Frame-Synchronous Viterbi Search

In frame-synchronous Viterbi search (FSVS) we
control the number of hypotheses generated in the con-
ventional Viterbi beam search by limiting the number
of models evaluated at each frame of the input data.
This is done by sorting all active hypotheses in de-
creasing order of path score and pruning away all but
a few top-scoring hypotheses at the end of every frame.
Thus at any level the total number of hypotheses for-
warded to the next frame is limited.

This pruning of hypotheses is di�erent from the
Viterbi beam pruning. While the Viterbi scores are
compared with the pruning threshold only at the top
level in the hierarchy, the FSVS pruning is carried
out at all levels. FSVS pruning can be dynamic where
the pruning threshold is decided according to the level
and/or in an adaptive fashion. Alternatively, it can be
static i.e. �xed by some upper limit on the number of
possible hypotheses. The choice of pruning strategy

and the value of the threshold (or limit on number of
hypotheses) are speci�c to the application.

Care must be taken in choosing the threshold for
frame-level pruning in order to avoid over-pruning of
hypotheses, for this will stop even potentially correct
hypotheses from advancing and a�ect the accuracy of
recognition.

4.1 Computation and Storage Issues

While the goal of FSVS is to save on computa-
tion by reducing the number of hypotheses, frame-
level pruning requires hypothesis scores to be sorted
at every frame. We have observed that though this
brings down the net gain in computational expendi-
ture, the savings in memory are considerable. The
computational load can be further reduced by exploit-
ing the pattern of hypothesis generation [Figure 2a].
In the �rst few frames of the observed data the rec-
ognizer has insu�cient knowledge to decide on more
likely patterns. Therefore it generates a very large
number of hypotheses, most of which are gradually
pruned away due to extremely poor scores in pres-
ence of further evidence. The initial frames constitute
the region where about 95% of the new hypotheses
are generated and hence have the maximum demands
on memory. We need to limit FSVS pruning only to
these frames. Thus FSVS is most suitable for recogni-
tion tasks where the available memory is not su�cient
to manage decoding over a large search space.

5 Results

The FSVS has been implemented on HG
(Hierarchical Grammar), a continuous speech recog-
nizer developed at Texas Instruments that uses a
multi-level description of acoustic and language mod-
els. Speech units such as sentences, words, syllables,
phones etc. are represented as HMM levels. Each
state in the HMM grammar is associated with a statis-
tical acoustic model which is a random vector of acous-
tic parameters with an underlying continuous multi-
variate Gaussian probability density. Various states of
HMMs can share the same statistical acoustic model,
thus enabling construction of a complex HMM topol-
ogy that models the temporal course of speech in a
compact fashion.

The algorithm was evaluated on a set of 1390 �les
from the VAA02 database1, each �le containing a 10-
digit string. The number of hypotheses generated at

1The VAA02 database is part of Texas Instruments' ongo-

ing Voice Across America (VAA) corpus building program and

contains speech recorded over standard telephone lines.
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c: Dynamic FSVS

Figure 2: Patterns of hypothesis generation

any frame is counted in terms of scoring data struc-
tures (sds) which are slots in the memory bu�er keep-
ing track of the hypothesis scores and the models asso-
ciated with them. The Viterbi beam can be constant
or set adaptively during search. We �xed the number
of hypotheses to advance at any frame as a fraction
of the total number of hypotheses. Total available
memory was �xed at 2500 slots and number of slots
available at each frame was �xed at 600.

FSVS pruning was carried out on the �rst 50 frames
of each �le. Figure 2 describes the e�ect of FSVS on
hypothesis generation. The experimental results are
displayed in Table 1.

Type Sent. Comptn. Mem. Word Sent.
of over (fracn of slots/ error error

pruning ow realtime) frame % %
Viterbi 308 0.289 590 24.2 36.1
FSVS 77 0.259 440 9.2 26.5
DFSVS 0 0.274 424 3.5 21.2

Table 1: Results of FSVS

It can be observed that FSVS works best in asso-
ciation with dynamic Viterbi pruning (DFSVS). Even
with static Viterbi beam search it manages to reduce
memory overow and improves upon the error rate.

6 Conclusion

Hierarchical pattern recognition systems, though
potentially powerful in solving complex tasks of large
magnitude, su�er from acute problems of excessive
computational and storage requirements for decod-
ing. Search techniques which have proven advanta-
geous in unilayered systems su�er from loss of e�-

ciency in a multi-layered environment. The implemen-
tation framework also needs to be reworked for these
algorithms to suit a magni�ed problem space.

The Frame-Synchronous Viterbi Search algorithm
attempts to reduce the problem space by modifying
the process of hypothesis generation. Though the re-
duction in computation is partly o�set by the overhead
required for frame-level pruning, the gain in memory is
substantial making this technique particularly attrac-
tive to memory-critical pattern matching applications.

There are numerous applications of hierarchical
pattern recognition systems ranging from target recog-
nition in radar, defense, and security systems, to
more exotic problems in �ngerprint matching, very
low rate image compression, and intelligent access of
video databases. E�cient search strategies enable the
implementation of more sophisticated statistical sig-
nal models, in many cases replacing technology based
on extensive sets of heuristics. Overall system per-
formance can be signi�cantly improved through pow-
erful closed-loop training techniques. Our future re-
search will be oriented towards developing more e�-
cient search strategies for hierarchical systems, and to
introduce N-best search algorithms into such systems.

References

[1] Chow Y. L. and R. M. Schwartz, \The N-Best Al-
gorithm: An E�cient Procedure for Finding Top
N Sentence Hypotheses", Proceedings DARPA
Speech and Natural Language Workshop, pp. 199-
202, October 1989.

[2] Murveit H., J. Butzberger, V. Digalakis and M.
Weintraub, \Progressive-Search Algorithms for
Large-Vocabulary Speech Recognition", Proceed-
ings DARPA Human Language Technology Work-
shop, March 1993.

[3] Nguyen L., R. Schwartz, F. Kubala and P.
Placeway, \Search Algorithms for Software-Only
Real-Time Recognition with Very Large Vocab-
ularies", Proceedings DARPA Human Language
Technology Workshop, pp. 91-95, March 1993.

[4] Paul D. B., \An E�cient A? Stack Decoder
Algorithm for Continuous Speech Recognition
with a Stochastic Language Model", Proceedings
ICASSP, pp. 405-409, March 1992.

[5] Schwartz R. M. and S. Austin, \E�cient, High-
Performance Algorithms for N-Best Search", Pro-
ceedings DARPA Speech and Natural Language
Workshop, pp. 6-11, June 1990.

[6] Viterbi A. J., \Error Bounds for Convolutional
Codes and an Asymptotically Optimal Decoding
Algorithm", IEEE Transactions on Information
Theory, Vol. IT-13, pp. 260-269, April 1967.


