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The Problem of
Continuous Speech Recognition

& Statistical Pattern Recognition

Mathematical representation:

p(W/A) = maxp(W/A)

Bayes’ Theorem:

p(TV/A) = arg max p(4/W)p(V)

& Automatic Speech Recognition
o W:wl,wQ,...,wN
e Acoustic Model p(A/W)
e Language Model p(W)

e Search
& Complex Applications = Hierarchical Modeling

#® Hidden Markov Models
e Training
e Decoding



Continuous Speech Recognition System
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Figure 1: Training and Recognition

Schematic of training and recognition systems



Statistical Language Modeling

& Motivation
Provides constraints on the occurrence of particular words
and word sequences, thus determining the search space.

#® Goodness Criterion
¢ Perplexity
P = 9f(w)

where H(w) is the entropy of the language model.

e Perplexity does not represent effect of similar-sounding
words
e Perplexity vs. accuracy of recognition

& Popular Language Modeling Techniques
e Static models
e Dynamic models



Static Language Models

& Uniform language model
e Probability of all words is equal = No constraints

& The n-gram
e The information about the identity of a word depends on the
document history i.e. words preceding it.
N
p(W) = H p(wi/wla s wi—l)

=1

e Use the previous n — 1 words to determine probability of
occurrence of each word.

p(W) = l;INlp(wi/wl, ey Wispt1)

Figure 2: n-gram for n = 3

e Limit on value of n —— 2 or 3 at most
e Perplexity and accuracy with n

& Limitations
e Cannot adapt to style of document or topicality of data



Dynamic Language Models

& Motivation
e Exploit domain-specific nature of data
e Increase modularity by sub-language modeling
e Capture long-range linguistic phenomena

& Prevalent Techniques
e Long-distance n-grams
o Triggers
e Cache models
e Class grammars
e Tree-based models
e Mixtures

# Practical Issues
e Size for large vocabulary
e Computational cost for training
e Convergence of training algorithms



Search Strategies

& Search Paradigm
To choose a word sequence with the highest likelihood score for
the acoustic and language models given the observed data.

& Motivation
The number of hypotheses (choices for the correct pattern)
grows exponentially with length of the utterance. Hence a
strategy that saves on computation and storage requirements
is sought.

& Approaches to restructure search
e Optimization of hypothesis generation
e Reduction in problem space
e Scarch reduction
e Application of external knowledge sources

& Sub-optimal choices

& Popular search techniques
e Viterbi Search
e Viterbi Beam Search
e A* Stack Decoding
e N-best Search
o Generalized N-best Search



Viterbi Algorithms

& Viterbi decoding

e At every instant, compute scores for all possible state
transitions in the models

e Update scores of all states that give a better score on
transition

e Keep track of the top scoring state at each instant

e Once end of utterance is reached, trace back to get final
solution

#® Viterbi beam search
e Viterbi search where only those hypotheses that have score
above some threshold (or beam) value are propagated

& Frame-synchronous Viterbi search
e To optimize hypothesis generation, applies frame-level
pruning in addition to the state level Viterbi beam
e Attractive for memory-critical and hierarchical systems

& Implementation issues
e Time-synchronous
e Computationally extensive for larger problems
e Inherently one-best



A* Stack Decoding

& Salient Features

e Constructs an ordered stack of all hypotheses above a certain
score

e For the hypothesis on top, shortlists possible next words using
fast-match techniques

e Computes new hypothesis scores for these using detailed
matches

e Re-orders the stack with these new hypotheses

& Implementation issues
e Depth-first search
e Problems of robustness and speed for large problems
e Allows use of cheaper models for fast-matches



N-best Search

& Algorithm
e Similar to Viterbi beam search
e Maintains all hypotheses within specified beam
e Propagates top N hypotheses at each state
e N is independent of Viterbi beam

#® Practical issues
e Tool to integrate information from multiple sources
e Partial towards shorter hypotheses

#® Generalized N-best
e Lattice N-best

> Builds a lattice of word (or sentence) hypotheses
in an initial pass

> Subsequent passes eliminate poor hypotheses and
downsize this lattice

> Obtains N-best hypotheses by recursive search tracing
back through this lattice

e Forward-backward search
> Forward pass search using cheap, efficient models
eliminates very poor hypotheses
> Backward search using complex models picks the N top
scoring hypotheses



Conclusion

& Current state of the art in speech recognition allows modest
applications

& Prohibitive constraints of computational and memory
requirements for real-life situations

& Need to develop better techniques for modeling speech, like a
hierarchy of HMMs

& Need to include long-distance linguistic effects on word
occurrence in efficient, practicable dynamic language models

& Search algorithms should be suitably modified to handle
magnified search spaces within the bounds of real-time
implementation

& Our future research will be directed primarily at developing
such efficient search strategies for hierarchical systems



