Methodologies for Language Modeling and Search in Continuous Speech Recognition

by

Neeraj Deshmukh Dept. of EE Boston University Boston, MA 02215 neeraj@engc.bu.edu Joseph Picone Instt. for Signal & Info. Processing Mississippi State University MS State, MS 39762 picone@ee.msstate.edu

Southeastcon, '95 Visualizing the Future

March 27, 1995

The Problem of Continuous Speech Recognition

♠ Statistical Pattern Recognition

Mathematical representation:

$$p(\widehat{W}/A) = \max_W p(W/A)$$

Bayes' Theorem:

$$p(\widehat{W}/A) = \arg\max_W p(A/W) p(W)$$

♠ Automatic Speech Recognition

- $W = w_1, w_2, \ldots, w_N$
- Acoustic Model p(A/W)
- Language Model p(W)
- \bullet Search

$\clubsuit \text{ Complex Applications} \Rightarrow \text{Hierarchical Modeling}$

♦ Hidden Markov Models

- Training
- Decoding

Continuous Speech Recognition System

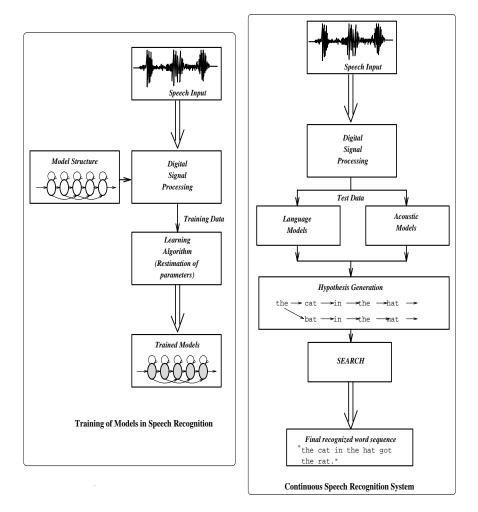


Figure 1: Training and Recognition

Schematic of training and recognition systems

Statistical Language Modeling

♠ Motivation

Provides constraints on the occurrence of particular words and word sequences, thus determining the search space.

♠ Goodness Criterion

• Perplexity

 $P = 2^{H(w)}$

where H(w) is the **entropy** of the language model.

- Perplexity does not represent effect of similar-sounding words
- Perplexity vs. accuracy of recognition

♠ Popular Language Modeling Techniques

- Static models
- Dynamic models

Static Language Models

♦ Uniform language model

• Probability of all words is equal \Rightarrow No constraints

♠ The n-gram

• The information about the identity of a word depends on the document history i.e. words preceding it.

$$p(W) = \prod_{i=1}^{N} p(w_i/w_1, \dots, w_{i-1})$$

• Use the previous n-1 words to determine probability of occurrence of each word.

$$p(W) = \prod_{i=1}^{N} p(w_i/w_1, \dots, w_{i-n+1})$$

Figure 2: n-gram for n = 3

- Limit on value of n 2 or 3 at most
- Perplexity and accuracy with n

♠ Limitations

• Cannot adapt to style of document or topicality of data

Dynamic Language Models

♠ Motivation

- Exploit domain-specific nature of data
- Increase modularity by sub-language modeling
- Capture long-range linguistic phenomena

♠ Prevalent Techniques

- Long-distance n-grams
- Triggers
- Cache models
- Class grammars
- Tree-based models
- Mixtures

♠ Practical Issues

- Size for large vocabulary
- Computational cost for training
- Convergence of training algorithms

Search Strategies

Search Paradigm

To choose a word sequence with the highest likelihood score for the acoustic and language models given the observed data.

Motivation

The number of hypotheses (choices for the correct pattern) grows exponentially with length of the utterance. Hence a strategy that saves on computation and storage requirements is sought.

♠ Approaches to restructure search

- Optimization of hypothesis generation
- Reduction in problem space
- Search reduction
- Application of external knowledge sources

♠ Sub-optimal choices

• Popular search techniques

- Viterbi Search
- Viterbi Beam Search
- A^{*} Stack Decoding
- N-best Search
- Generalized N-best Search

Viterbi Algorithms

♠ Viterbi decoding

- At every instant, compute scores for all possible state transitions in the models
- Update scores of all states that give a better score on transition
- Keep track of the top scoring state at each instant
- Once end of utterance is reached, trace back to get final solution

🔶 Viterbi beam search

• Viterbi search where only those hypotheses that have score above some threshold (or beam) value are propagated

♠ Frame-synchronous Viterbi search

- To optimize hypothesis generation, applies frame-level pruning in addition to the state level Viterbi beam
- Attractive for memory-critical and hierarchical systems

♠ Implementation issues

- Time-synchronous
- Computationally extensive for larger problems
- Inherently one-best

A^{*} Stack Decoding

♦ Salient Features

- Constructs an ordered stack of all hypotheses above a certain score
- For the hypothesis on top, shortlists possible next words using fast-match techniques
- Computes new hypothesis scores for these using detailed matches
- Re-orders the stack with these new hypotheses

♠ Implementation issues

- Depth-first search
- Problems of robustness and speed for large problems
- Allows use of cheaper models for fast-matches

N-best Search

♦ Algorithm

- Similar to Viterbi beam search
- \bullet Maintains *all* hypotheses within specified beam
- Propagates top N hypotheses at each state
- N is independent of Viterbi beam

\blacklozenge Practical issues

- Tool to integrate information from multiple sources
- Partial towards shorter hypotheses

♠ Generalized N-best

- Lattice N-best
 - \triangleright Builds a lattice of word (or sentence) hypotheses in an initial pass
 - Subsequent passes eliminate poor hypotheses and downsize this lattice
 - Obtains N-best hypotheses by recursive search tracing back through this lattice
- Forward-backward search
 - Forward pass search using cheap, efficient models eliminates very poor hypotheses
 - Backward search using complex models picks the N top scoring hypotheses

Conclusion

- ♠ Current state of the art in speech recognition allows modest applications
- Prohibitive constraints of computational and memory requirements for real-life situations
- \blacklozenge Need to develop better techniques for modeling speech, like a hierarchy of HMMs
- ♠ Need to include long-distance linguistic effects on word occurrence in efficient, practicable dynamic language models
- Search algorithms should be suitably modified to handle magnified search spaces within the bounds of real-time implementation
- ♠ Our future research will be directed primarily at developing such efficient search strategies for hierarchical systems