
Methodologies for Language Modeling
and Search in Continuous Speech

Recognition

by

Neeraj Deshmukh Joseph Picone

Dept. of EE Instt. for Signal & Info. Processing

Boston University Mississippi State University

Boston, MA 02215 MS State, MS 39762

neeraj@engc.bu.edu picone@ee.msstate.edu

Southeastcon, '95
Visualizing the Future

March 27, 1995



The Problem of
Continuous Speech Recognition

� Statistical Pattern Recognition

Mathematical representation:

p(dW=A) = max
W

p(W=A)

Bayes' Theorem:

p(dW=A) = argmax
W

p(A=W )p(W )

� Automatic Speech Recognition

� W = w1; w2; : : : ; wN
� Acoustic Model p(A=W )
� Language Model p(W )
� Search

� Complex Applications ) Hierarchical Modeling

� Hidden Markov Models

� Training
� Decoding
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Statistical Language Modeling

� Motivation

Provides constraints on the occurrence of particular words
and word sequences, thus determining the search space.

� Goodness Criterion

� Perplexity

P = 2H(w)

where H(w) is the entropy of the language model.

� Perplexity does not represent e�ect of similar-sounding
words

� Perplexity vs. accuracy of recognition

� Popular Language Modeling Techniques

� Static models
� Dynamic models



Static Language Models

� Uniform language model

� Probability of all words is equal ) No constraints

� The n-gram

� The information about the identity of a word depends on the
document history i.e. words preceding it.

p(W ) =
NY
i=1

p(wi=w1; : : : ; wi�1)

� Use the previous n� 1 words to determine probability of
occurrence of each word.

p(W ) =
NY
i=1

p(wi=w1; : : : ; wi�n+1)

. . . w w w w w wi i-1 i-2 i-3 i-4 i-5 . . . . . . 

Figure 2: n-gram for n = 3

� Limit on value of n |{ 2 or 3 at most
� Perplexity and accuracy with n

� Limitations

� Cannot adapt to style of document or topicality of data



Dynamic Language Models

� Motivation

� Exploit domain-speci�c nature of data
� Increase modularity by sub-language modeling
� Capture long-range linguistic phenomena

� Prevalent Techniques

� Long-distance n-grams
� Triggers
� Cache models
� Class grammars
� Tree-based models
� Mixtures

� Practical Issues
� Size for large vocabulary
� Computational cost for training
� Convergence of training algorithms



Search Strategies

� Search Paradigm

To choose a word sequence with the highest likelihood score for
the acoustic and language models given the observed data.

� Motivation

The number of hypotheses (choices for the correct pattern)
grows exponentially with length of the utterance. Hence a
strategy that saves on computation and storage requirements
is sought.

� Approaches to restructure search

� Optimization of hypothesis generation
� Reduction in problem space
� Search reduction
� Application of external knowledge sources

� Sub-optimal choices

� Popular search techniques

� Viterbi Search
� Viterbi Beam Search
� A? Stack Decoding
� N-best Search
� Generalized N-best Search



Viterbi Algorithms

� Viterbi decoding

� At every instant, compute scores for all possible state
transitions in the models

� Update scores of all states that give a better score on
transition

� Keep track of the top scoring state at each instant
� Once end of utterance is reached, trace back to get �nal
solution

� Viterbi beam search

� Viterbi search where only those hypotheses that have score
above some threshold (or beam) value are propagated

� Frame-synchronous Viterbi search

� To optimize hypothesis generation, applies frame-level
pruning in addition to the state level Viterbi beam

� Attractive for memory-critical and hierarchical systems

� Implementation issues

� Time-synchronous
� Computationally extensive for larger problems
� Inherently one-best



A? Stack Decoding

� Salient Features

� Constructs an ordered stack of all hypotheses above a certain
score

� For the hypothesis on top, shortlists possible next words using
fast-match techniques

� Computes new hypothesis scores for these using detailed
matches

� Re-orders the stack with these new hypotheses

� Implementation issues

� Depth-�rst search
� Problems of robustness and speed for large problems
� Allows use of cheaper models for fast-matches



N-best Search

� Algorithm

� Similar to Viterbi beam search
� Maintains all hypotheses within speci�ed beam
� Propagates top N hypotheses at each state
� N is independent of Viterbi beam

� Practical issues

� Tool to integrate information from multiple sources
� Partial towards shorter hypotheses

� Generalized N-best

� Lattice N-best
> Builds a lattice of word (or sentence) hypotheses

in an initial pass
> Subsequent passes eliminate poor hypotheses and

downsize this lattice
> Obtains N-best hypotheses by recursive search tracing

back through this lattice

� Forward-backward search
> Forward pass search using cheap, e�cient models

eliminates very poor hypotheses
> Backward search using complex models picks the N top

scoring hypotheses



Conclusion

� Current state of the art in speech recognition allows modest
applications

� Prohibitive constraints of computational and memory
requirements for real-life situations

� Need to develop better techniques for modeling speech, like a
hierarchy of HMMs

� Need to include long-distance linguistic e�ects on word
occurrence in e�cient, practicable dynamic language models

� Search algorithms should be suitably modi�ed to handle
magni�ed search spaces within the bounds of real-time
implementation

� Our future research will be directed primarily at developing
such e�cient search strategies for hierarchical systems


