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Abstract - Automatic speech recognition
has made signi�cant strides from the days of
recognizing isolated words. Today state-of-the-
art systems are capable of recognizing tens of
thousands of words in complex domains such
as newspaper correspondence and travel plan-
ning. A major part of this success is due to re-
cent advances in language modeling and search
techniques that support e�cient, sub-optimal
decoding over large search spaces. The bene�t
from focusing a recognition system on a par-
ticular domain has motivated a steady progres-
sion from static language models towards more
adaptive models that consist of mixtures of
bigrams, trigrams and long-distance n-grams.
Similarly, availability of multiple sources of in-
formation about the correct word hypothesis
has led to the advent of e�cient multi-pass
search strategies. The result is a powerful
pattern-matching paradigm that has applica-
tions to a wide range of signal detection prob-
lems. Future research in large vocabulary con-
tinuous speech recognition will be directed to-
wards developing more e�cient means of dy-
namically integrating such information.

INTRODUCTION

The aim of continuous speech recognition (CSR)
is to provide an e�cient and accurate mechanism to
automatically transcribe speech into text. As di�erent
words are spoken at di�erent times by di�erent people,
a statistical approach to CSR appears to be naturally
applicable . If a sequence of words

W = w1; w2; : : : ; wN (1)

is spoken, and if A is the acoustic evidence that is
provided to the recognition system to identify this
sequence; then the recognizer should decide in favor
of the word string Ŵ which maximizes p(W=A), the

probability that the word string W was spoken given
that data A was observed:

p(Ŵ=A) = max
W

p(W=A): (2)

Using Bayes formula this equation reduces to �nding
Ŵ such that

Ŵ = argmax
W

p(W )p(A=W ): (3)

The probability p(A=W ) that the data A will be ob-
served if a word sequence W was spoken is given by
what is known as the statistical acoustic model. The
probability p(W ) that enumerates the a priori chances
of the word sequence W being spoken is determined
by the statistical language model. Typically, Hidden
Markov Models (HMMs) [1] are used to construct the
acoustic models, while language models are mostly
based on a Markov process. The recognizer computes
the likelihood of the observed data using the acoustic
models. Scores for various word sequences or hypothe-
ses are generated using the acoustic model scores and
the probability of the word sequences which is given
by the language model. The hypothesis corresponding
to the maximum score is chosen as the correct word
sequence.

The number of word sequences is quite large even
for a small vocabulary, and the process of scoring
the hypotheses is a fairly complicated one. There-
fore closed-form solutions that can be obtained us-
ing linear-algebraic methods do not exist. A search
paradigm needs to be employed to select a solution
from numerous alternatives based on some criteria.

In this paper we will concentrate on the language
modeling and search aspects of CSR. In the next sec-
tion we provide a more detailed introduction to the
problem of language modeling followed by an overview
of various language modeling techniques. Various as-
pects of the search strategy and some predominant
search techniques are discussed next.



STATISTICAL LANGUAGE MODELING

The choice and scope of the language model cho-
sen has a signi�cant in
uence on the performance of
a speech recognition system. A language model is im-
portant as it provides constraints on the occurrence of
particular words and word sequences. It thus plays a
considerable role in determining the search space and
hence the appropriate search strategy for the recogni-
tion process.

The problem of language modeling becomes com-
putationally expensive for a large vocabulary set. The
rules of simple formal grammars are inadequate to
provide a su�cient framework for recognition. Real
speech is not strictly grammatical and involves awk-
ward phrasing or abbreviated word-forms. These de-
pend on the context of the conversation or assume a
corresponding knowledge from the listener. A good
language model should be able to incorporate such
grammatical constraints, topical dependencies, con-
straints imposed by the accent and style of the speaker
etc. It should also be compact enough to allow a rea-
sonably e�cient real-time implementation.

Given di�erent language models, we need a frame-
work to objectively compare them to determine which
one is better than the others. Such a goodness crite-
rion is discussed next.

Perplexity

Perplexity [2] is an objective measure of language
model quality and derives its roots from information
theory. A language source (e.g. a speaker) provides
information in speaking a word by removing the un-
certainty about the identity of that word. The greater
the uncertainty about the next word, more is the infor-
mation contained in it. A measure of this information
is entropy which is de�ned as follows:
Entropy: If a random variable X takes N in-
dependent values x1; x2; : : : ; xN with probabilities
p(x1); p(x2); : : : ; p(xN ), its entropy is given by

H(X) = �

NX

i=1

p(xi) log2 p(xi): (4)

We can consider the language model to be a random
process representing di�erent words w1; : : : ; wT . Cor-
respondingly we can �nd the entropy H(w) of this
language model. The perplexity of this model is given
by

P = 2H(w): (5)

The value of perplexity depends on the data on
which the language model is trained as well as on the
test data. It treats words as abstract symbols and does

not take into account the acoustic similarity between
words. A language model with low perplexity pro-
vides some bounds on the performance of the system,
as the recognizer has a correspondingly smaller num-
ber of equiprobable choices to pick from. However,
for acoustically similar words performance of the rec-
ognizer su�ers irrespective of perplexity. Thus, per-
plexity is not necessarily related to accuracy and a
good language model should be able to satisfy both of
these criteria.

Static Language Models

Language models are used by CSR systems to ap-
ply various levels of constraints to the recognizer. A
uniform language model that assigns equal probabil-
ities to all words in the vocabulary does not impose
any constraint on the recognizer and therefore is not
very useful. We need to �nd information about the
identity of the word wi given its history i.e. the word
sequence w1; : : : ; wi�1 preceding it in the document.

In a statistical model, we can represent the prob-
ability of occurrence of the word sequence W in (1)
as

p(W ) =
NY

i=1

p(wi=w1; : : : ; wi�1): (6)

A language model that uses the history of the n�1 im-
mediately preceding words to compute the probability
of occurrence of the current word is called a n-gram

model [3].

p(W ) =
NY

i=1

p(wi=w1; : : : ; wi�n+1): (7)

A value of n greater than 3 is not practicable for im-
plementation except on extremely small vocabularies
and hence is typically limited to 2 (bigram model) or
3 (trigram model). A trigram is better than a bigram
model in terms of both accuracy and perplexity as it
carries more information.

The n-gram model is simple yet powerful [4], but it
is static. It uses only the very immediate history of the
word and does not depend on or vary with the data
being observed. Therefore it is not capable of adapt-
ing to the style or topic of the document and cannot
exploit these to enhance the probabilities of related
words while suppressing those of others. Therefore we
need to explore some dynamic models.

Dynamic Language Models

An adaptive or dynamic model improves upon the
performance of a static trigram model by changing es-
timates of word probabilities depending upon the part



of the document observed so far. This is particularly
useful if a model trained on data pertaining to a spe-
ci�c domain is used in another domain, as the model
can adjust to the new language. Also, if a large lan-
guage source can be envisioned as consisting of small
homogeneous chunks or sublanguages (e.g. newspaper
articles); then an adaptive model trained on the het-
erogeneous source can exploit the sublanguage struc-
ture to improve performance. Some language models
that attempt to capture these long-distance linguistic
phenomena like topic-dependence are as follows:

Long-distance n-grams: These are similar to con-
ventional n-grams except that they precede the word
wi by j positions [5].

Triggers: A trigger pair [6, 7] consists of two word se-
quences where the occurrence of one changes the prob-
ability estimate of the other. Constructing a trigger
model involves eliminating all pairs of word sequences
that are not signi�cantly related. The e�ects of sev-
eral triggers towards the triggered sequence are com-
bined and the trigger information is integrated with
the static model in a way that preserves the advan-
tages of both.

A Maximum Entropy (ME) algorithm [8, 9] is used
to train the trigger-based language model. While the
ME approach is intuitively simple, easy to implement
to a variety of problems and guaranteed to converge
to a solution, it su�ers from very high requirements of
memory and computation and does not have a well-
de�ned rate of convergence.

Cache Models: Once a word (or word sequence)
occurs in a document, its likelihood of recurrence is
greatly increased. This tendency is most true of rare
words, and reduces as the word becomes more frequent
in occurrence. Based on this phenomenon, the last L
words (or word sequences) of the document seen so far
are stored in a cache. This cache is used to estimate
the dynamic unigram, bigram and trigram probabili-
ties [10, 11, 12] and then incorporated with the static
model using interpolation techniques. Caches can also
be formed based on the number of times wi already
appeared in the history and based on distance i.e. the
last time wi occurred in the history.

Class Grammars: Instead of words, classes of words
are taken as the units of the model. The probability
of word occurrence is determined by the probability of
occurrence of that word class.

Tree-based models: These models [13] generate a
binary decision tree from the training data to cluster
word histories. Each node of the tree is associated
with a state of the language model and each leaf cor-
responds to a legal word sequence. The tree is con-
structed using yes/no questions that reduce the un-

certainty of predicting the next word at every node
and thus minimize the average entropy at every leaf.
However, these methods are computationally expen-
sive.
Mixture models: The language model is built as a
mixture of several component models, each of which is
trained on the n-gram statistics of a particular topic or
broad class of sentences. The component models can
be combined using either dynamic-weight mixtures at
n-gram level [14] or static-weight mixtures at sentence
level [15, 16]. The topics can be speci�ed by hand,
or can be determined automatically using clustering
techniques. Robustness of parameter estimation for
mixture components is an important issue here as each
component model is trained only on a part of the avail-
able data which corresponds to a particular topic.

Other Techniques

There are various other techniques of language
modeling that have di�erent properties. For instance,
while context-free [17] and uni�cation [18] models are
more realistic, they are computationally cumbersome.
On the other hand, �nite state [19, 20] models that
try to model all legal sentences in a single network are
constraining but they are not as realistic.

After incorporating both the language model and
the acoustic model in the recognition system, the next
step is to evaluate the data and search for the best
hypothesis. In the next section we discuss this aspect
of CSR.

SEARCH IN CSR

A decoding strategy is used to �nd the most likely
word sequence given the language and acoustic mod-
els and a spoken utterance. A simple and intuitively
obvious search strategy would be to simply enumer-
ate all possible hypotheses and pick the most likely
one. However, since the number of possible hypothe-
ses grows exponentially with the length of the word
sequence, this enumerative search is practical only for
super-trivial tasks. For more realistic problems we
need to restructure this unrestricted search algorithm
so that the recognizer can �nd a solution in a �nite
time interval [21]. The hypothesis generating process
is optimized by merging common partial hypotheses.
The search space is reduced by heuristically prun-
ing away hypotheses with low scores. Applying such
transformations to the problem space causes the sys-
tem to make suboptimal decisions, though this does
not seem to a�ect the accuracy of recognition. Exter-
nal knowledge sources are also employed to improve
search e�ciency. Two commonly used search algo-



rithms that employ the above techniques are described
next.

Viterbi Search

The recognition system can be treated as a re-
cursive transition network composed of the states of
HMMs in which any state can be reached from any
other. The Viterbi search algorithm [22] builds a
breadth-�rst search tree out of this network in the
following fashion:

1. If N is the duration of the utterance, N number
of state lists S are generated. These lists are ini-
tialized by setting the probability of the initial
state as 1 and the others 0.

2. For each state s 2 S(t)

For each possible transition from s to a state �s 2
S(t + 1)

� Compute the transition probability p(�s=s).
� If �s is uninitialized, initialize it with score
p(�s=s) and a backpointer to s.

� Else update score(�s) only if this transition
gives a better score.

3. If t = N backtrack; else go to step 2 with t = t+1.

Viterbi search is time-synchronous; i.e. at any
stage all partial hypotheses correspond to the same
portion of the utterance and hence can be directly
compared. However, a complete Viterbi search is im-
practical for even moderate-sized tasks because of the
size of the state space. A Viterbi beam search [23, 24,
25, 26] is used to reduce the search space.

In Viterbi beam search only the hypotheses whose
likelihood falls within a �xed radius of the most likely
hypothesis are considered. It is a dynamic program-
ming technique that exploits the observation that
many states in the state lists have zero or near-zero
scores and therefore need not be considered towards a
solution. The best beam size can be determined em-
pirically or adaptively. The advantage of the dynamic
beam heuristics is that it allows the search to consider
many good hypotheses in absence of a clearly domi-
nant solution. Conversely, in case of a clear best hy-
pothesis few others need to be maintained. The main
problem with this strategy is that the same state oc-
curring in di�erent paths needs to be recomputed ev-
ery time adding to the computation cost.

Many variations of Viterbi beam search have been
proposed to improve upon its performance. The state
space can be partitioned into subsets that are sub-
ject to di�erent beam widths [27]. If there is more
information in the form of a larger number of con-
textual states a tighter pruning threshold is applied.

A maximum of path scores may be taken when they
merge at word boundaries and a sum when the merg-
ing is within a word [24]. In another modi�cation,
additional pruning is performed at the frame level to
evaluate only a few best-scoring states [28]. This prun-
ing is typically done only at the few initial frames as
almost 95% of hypotheses are generated here. In very
large vocabulary problems, a tree structured network
in which the states corresponding to common initial
phones are shared by di�erent words can be used [29].
This uses the fact that the uncertainty about the iden-
tity of the word is much higher at its beginning than
at the end and therefore more computation is required
at the initial phones than the later ones.

Stack Decoding

Stack decoding search [30] is a depth-�rst tech-
nique similar to the A? search [31] in arti�cial intelli-
gence. It constructs a search tree from the language
model state graph where the states correspond to ab-
stract states in the language and the branches repre-
sent transitions between these states. The basic stack
decoder paradigm [32, 33] can be summarized as:

1. Pop the best partial hypothesis from the stack

2. Apply acoustic and language model fast matches1

to shortlist the candidate next word.

3. Apply acoustic and language model detailed
matches to candidate words.

4. Choose the most likely next word and update all
hypotheses.

5. Insert surviving new hypotheses into the stack.

The A? stack decoder e�ciently combines all infor-
mation into a single uni�ed one-pass search, though it
su�ers from problems of speed, size, accuracy and ro-
bustness. However, several variations that use weaker
and cheaper initial acoustic and language models to
produce a list of likely hypotheses that is later re�ned
using more detailed and expensive models have been
proposed that improve on its performance.

N-BEST SEARCH

The optimal N-best decoding algorithm [34] is
quite similar to the Viterbi search. However, while
Viterbi decoding is inherently 1-best, N-best search
�nds all hypothesis sequences within the speci�ed
beam and keeps track of hypotheses with di�erent his-
tories at each state. It then allows only N top-scoring

1Fast matches are computationally cheapmethods for reduc-

ing the number of word extensions which need to be checked

by the more accurate but computationally expensive detailed

matches.



hypotheses to propagate to the next state. This state-
dependent pruning is independent of the global Viterbi
beam threshold.

The sources of information on speech used for
recognition purposes can be extremely diverse and
are correspondingly associated with di�erent costs
in terms of computation and memory requirements.
A hypothesis that scores the highest given all these
knowledge sources will be an optimal solution to the
recognition problem. But this typically requires an
impractically large search space. It is advantageous to
use a strategy in which the most e�cient knowledge
sources are used �rst to generate a list of top N hy-
potheses. These hypotheses can later be re-evaluated
with other, more expensive knowledge sources to ar-
rive at the best hypothesis. N-best search provides
an e�cient method of integrating di�erent knowledge
sources and makes the search process more modular.
The scores from di�erent knowledge sources can be
combined using weights chosen to minimize the recog-
nition error [35].

The N-best paradigm as described above has the
problem of being partial towards shorter hypotheses.
In other words, if we consider the probability of error
in recognition of a single word being roughly inde-
pendent of its position in the sentence, then a longer
sentence will have more errors and therefore will be
pushed down in the rank of correct hypotheses. Thus
an exact N-best search will require a very large value
of N to �nd the correct answer for a long sentence.

A number of modi�cations have been proposed to
overcome this problem and to make N-best search
more accurate and e�cient. These modi�cations al-
low for some approximations to generate the list of
sentences with much less computation. Such approxi-
mations are justi�ed as long as the correct hypothesis
is assured to be in this list. Even if it does not hold
a very high rank in this preliminary list, the correct
hypothesis can be found later by rescoring on other
knowledge sources.

Lattice N�Best Algorithm

An initial pass of the recognition system is used to
build a lattice of word (or phoneme or syllable etc)
hypotheses which is searched through by subsequent
passes to generate the correct hypothesis. A time-
synchronous one-best forward-pass search algorithm is
used within words and at each frame all the theories
and their respective scores are stored in a traceback
list. The best score at this frame is sent forward along
with a backpointer to the saved list [36]. The N-best
sentences are obtained by recursive search through
this traceback list. This algorithm is extremely fast

but often underestimates or misses high-scoring hy-
potheses.

A progressive search [37] can be used to avoid this
problem. Here a lattice of all sentence hypotheses is
maintained instead of evaluating independent sentence
hypotheses. This lattice is treated as a grammar and
used to rescore all the hypotheses.

Word�Dependent N�Best Search

This algorithm di�erentiates between hypotheses
on the basis of the previous word instead of the whole
preceding sequence [36]. The probability for each of
the di�erent preceding words is stored within the word
at each state. At the end of the word the score for
each hypothesis and the name of the previous word
are recorded. A recursive traceback is used at the end
of the sentence to derive the list of the most likely
sentences.

Forward�Backward Search

Forward-backward search algorithms use an ap-
proximate time-synchronous search in the forward di-
rection to facilitate a more complex and expensive
search in the backward direction [36, 38, 39, 40]. This
generally results in speeding up the search process on
the backward pass as the number of hypotheses to be
explored is greatly reduced by the forward search. A
simpli�ed acoustic or language model is used to per-
form a fast and e�cient forward-pass search in which
the scores of all partial hypotheses that fall above a
pruning beamwidth are stored at every state. Then a
normal within-word beam search is performed in the
backward direction to generate the N-best hypotheses
list. The backward search scores high on a hypothesis
only if there also exists a good forward path leading
to a word-ending at that time.

Since the forward-backward search allows use of
di�erent models on the two passes, a complex model
can be used on the backward pass to come up with
extremely accurate results [41]. The forward scores,
though not exact, are good enough estimates of the
word end scores and can be further modi�ed by nor-
malization relative to the highest score in each frame.
The time-synchronous nature of both passes allows
them to have di�erent normalized scores without loss
of accuracy.

Forward-backward search algorithms have greatly
facilitated real-time handling of large-scale tasks. The
backward pass search is fast enough to be performed
without any perceptible delay after the forward search.
The forward search can be made more approximate
and hence e�cient as the scores need not be very ac-
curate on the forward pass.



A variation of the forward-backward N-best search
is a tree-trellis based fast search algorithm [42] that
uses a modi�ed Viterbi beam algorithm in the forward
pass and an A? stack decoder search on the backward
pass. The partial hypothesis map prepared in the for-
ward trellis search is used by the backward search to
estimate the incomplete portion of the partial hypoth-
esis.

CONCLUSION

The techniques described here have been incorpo-
rated to some extent into most modern-day large vo-
cabulary systems. Use of such techniques in acoustic
and language modeling have resulted in real-time im-
plementation of systems capable of recognizing over
40,000 words in modest amounts of general purpose
hardware [27, 33, 37].

However, these advances still fall far short of de-
mands of operational systems. For example, the same
technology performs at a 50% word error rate on con-
versational speech collected over the telephone. Even
under laboratory conditions, such technology is unable
to handle many conversational speech phenomena (re-
ferred to as dys
uencies). For example, one such com-
mon phenomena that is poorly represented in today's
systems is called false-start ("Please give me, uh, no,
just a second, ok, please give me a red one.")

Our future research will be oriented towards ex-
ploring alternative language models that improve
performance by providing the recognizer with more
speci�c context, yet signi�cantly reduce the search
space. We will focus on dynamic language models
that accurately incorporate the long-distance e�ects
on word occurrence. Speci�cally, we will try to de-
velop improved adaptive mixtures of trigrams and
long-distance n-grams.
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