
ch
not
st
rs
en

en
s

ey
g
in

hat
ic
—
h
an
e
be
in
e

ate
is

l
e
s.
t a
er

of
f
ve
ve
e
r
ght
of
f

ing
ABSTRACT

Hidden Markov Models and n-gram language modeling
have been the dominant approach in continuous speech
recognition for almost 15 years. Though successes have
been well-documented, fundamental limitations of this
paradigm surface at both the acoustic and language
modeling ends of the speech recognition problem.
Although acoustic models based on linear statistical
assumptions have led to steadily improved performance on
speech collected in benign environments, they are still
sorely lacking on spontaneous data encountered in the field.
Similarly, robust parsing of dialogs and unconstrained man-
machine communications is a serious problem for today’s
technology.

In this session, we attempt to stimulate a discussion on new
approaches in statistical modeling. Researchers from both
inside and outside of the speech community are invited to
present new perspectives on how complex behavior can be
modeled in a parsimonious manner. Our panel discussion
will attempt to identify and debate a handful of promising
new directions in statistical modeling of speech.

1. INTRODUCTION

Currently, the most successful speech recognition systems
use detailed models of local context with large numbers of
parameters trained in a limited domain. In acoustic
modeling, context-dependent hidden Markov models
(HMMs) [1,2] have become a standard approach for
handling the variability due to local phonetic context,
where local context may be a window of 3-5 phones. In
language modeling, trigrams [3] have dominated the field,
with major improvements coming from use of higher-order
n-grams. For problems where training data has been
steadily increasing these models show steady improvement,
as demonstrated in the NAB benchmarks where word
accuracy rates of less than 10% have been achieved on an
open vocabulary task [2]. However, the same technology
has provided minimal advances on less constrained tasks,

specifically on the spontaneous conversational spee
found in the Switchboard corpus where error rates have
moved much beyond 50% word accuracy [4] in the pa
two to three years. In addition, commercial researche
often observe error rate increases of factors of 3-4 wh
moving lab technology to the field.

Of course, both trigram language models and hidd
Markov acoust ic models have made tremendou
contributions to progress in speech recognition. Th
clearly established the value of automatic trainin
algorithms and the usefulness of Markov assumptions
simplifying both recognition and training complexity. In
addition, the successes provide important evidence t
local context — neighboring phonemes in acoust
modeling and neighboring words in language modeling
provides the most important information for speec
recognition. Conditioning on local context seems to be
important attribute of a good statistical model. Th
question raised here is whether sufficient progress can
made simply by increasing the number of parameters
these models. Adaptation certainly helps improv
performance, but it is predicated on reasonably accur
baseline performance. Progress in speech recognition
ultimately limited by the sophistication of statistica
models, and current technology is unlikely to provide th
capability for computers to really converse with human
New models are needed to better capture variability a
local level and/or to model trends operating at a high
level.

Nonlinear systems theory has been an active area
research in the last twenty years [6] in the field o
dynamics. What is new is that it promises to be an acti
area of engineering in the next twenty years as a new wa
of mathematics begins moving from the laboratory to th
field. Much as linear system theory provided tools fo
scientists to analyze classes of problems previously thou
too complicated, nonlinear system theory offers hope
providing tools to unlock the mysteries of a wide range o
important biological signals such as speech.
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Similarly, computational research in language has spann
decades. In the late 1950s, a hierarchy of grammati
formalisms [5] was defined in an attempt to document th
complexity of language. As HMMs were introduced i
speech recognition, great excitement was generated by
fact that both acoustic models and language models co
be represented as state machines. Researchers were qu
see, however, that this was simply the first step
representing the entire speech recognition problem a
formal language theory problem. HMMs were shown to b
equivalent to regular grammars, and shown to simply
one step in a progression towards context-sensiti
grammars. Today, we find systems routinely implementin
context-free grammars and left regular grammars. Tr
context-sensitive grammars, however, have so far be
impractical for speech recognition and understandin
applications. In addition, experiments in understandin
spontaneous speech (e.g. in the ATIS task [2]), have sho
that conventional parsing techniques are ill-suited
processing spontaneous spoken language and vari
robust parsing algorithms are now being explored.

In sum, research in both acoustic and language model
currently benefits from the power of context-sensitiv
statistics, but both are also limited in not moving beyon
the local level. Too many parameters are dedicated to
local structure at the expense of capturing global structu
As noted in [6], “Knowing the microscopic laws of how
things move still leaves us in the dark as to their larg
consequences.” One of the attractions of nonlinear syste
is the hope of modeling the coarse behavior of a system
which a detailed analysis is not required, a very comm
problem in statistical mechanics. Similarly, one of th
attractions of grammatical language models is the poten
for capturing the higher level structure inherent to languag
It is clear that our current formalisms are not adequate
the difficult recognition tasks at hand. Here, we take a loo
at some new directions that may offer a means
overcoming limitations of existing statistical models.

2. SESSION OVERVIEW

This session consists of four invited panelists:

• Simon Haykin, McMasters University
“Chaotic Statistical Modeling”

• Tony Robinson, Cambridge University
“Some New Uses of EM in Acoustic Modeling”

• Ted Briscoe, Cambridge University
“Language Modeling or Statistical Parsing?”

• Fred Jelinek, Johns Hopkins University
“A Context-Free Headword Language Model”

The panelists were selected to provide perspectives on
key dimensions of the speech understanding proble
d
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acoustic modeling and language modeling. On each of th
topics, we have included a speaker drawn from outside
normal speech research community, and a spea
representing a somewhat more mainstream viewpoint.

The first two talks deal with the issue of nonlinear acous
modeling. The piecewise constant model has been a sta
of digital speech processing since the early 1970’s.
multivariate Gaussian model of observation vectors h
been employed in hidden Markov model-based spee
recognition systems since the early 1980’s. Though neu
network-based approaches have been researched sinc
mid-1980’s, only recently has the performance of suc
models rivaled conventional technology.

Simon Haykin suggests a new approach to signal model
based on chaotic signals. His research is representative
new body of science devoted to the application of nonline
dynamics to conventional classification problems
Classification of signals into deterministic and stochas
ignores an important class of signals, known as chao
signals, that are deterministic by nature yet random
appearance. While direct modeling of the speech signa
output from a nonlinear system has not proven to provi
enhancements over conventional analyses, recent rese
suggests these techniques are applicable to the statis
modeling problem that is the core of the acoustic modeli
problem. In his talk, Haykin advocates an architecture th
employs neural networks to perform the actual predictio
detection task. This is not unlike many hybrid speec
recognition systems that now use a combination of hidd
Markov models and neural networks.

In a companion talk, Tony Robinson discusses issues
acoustic modeling in the context of connectionist/HMM
systems, which use neural networks to estimate poste
distributions for HMM states, and can be thought of as
non-linear extension of current HMM technology. While hi
general approach is based on non-linear models, the the
of his talk is new applications of one of the mos
powerful tools behind HMM technology: the expectation
maximization (EM) algorithm [7]. Robinson examines th
notion of a hidden component of the process, e.g. the st
in an HMM. He explores how this state, which is currentl
used to capture contextual and temporal phone
variability, can improve aspects of speech recognition fro
feature extraction to posterior distribution modeling t
channel or outlier (goat) identification.

The subsequent two talks deal with issues related to
language modeling problem, which many people belie
will be the source of most of the improvement in speec
understanding systems in the next few years. We have s
many attempts at improving recognition through mo
sophisticated language modeling, from higher-order a
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variable-order n-grams to the introduction of grammatical
structure, but such techniques have generally resulted in
modest improvements in performance at the expense of
significant increases in complexity. However, new work
aimed at combining the advantages of grammatical
structure and local context are emerging in various forms of
lexicalized grammars. This combined approach may offer
the most hope for performance gains, and one theme of the
two language modeling talks is lexicalization and its
practical implementation.

Ted Briscoe suggests that interpretation of text requires a
framework beyond n-gram models, due to a need of such
systems to evaluate the relative likelihoods of complex
grammatical relationships, which are hierarchical and
therefore not easily captured by n-gram models. He
advocates the use of statistical parse selection models over
stochastic context free grammars, but quickly notes that
integration of estimate-maximize (EM) techniques into
these formalisms is challenging. Such formalisms do not
lend themselves to the treatment of conditional probabilities
and maximum l ike l ihood calculat ions involv ing
ambiguous-in-time candidate partial parses. Research
to-date in formalisms beyond CFGs has been disappointing.
Yet, it is clear that such formalisms are needed to deal with
the complex language models required for spontaneous
dialogues.

In a companion talk, Fred Jelinek introduces lexicalized
stochastic context-free language model that takes advantage
of a parser to define the phrase structure of a word string.
The authors use the notion of a phrase headword to relate
non-terminals directly to lexical items, and use the given
parse structure to reduce the cost of computing the
probability of a word string. The problem of sparse data in
parameter estimation is addressed by defining word classes
as would be used in a class grammar, but here the classes
simply define a smoothing hierarchy. This approach is
representative of a growing trend towards lexicalized
grammars.

3. DISCUSSION

Perhaps the most important aspect of this session will be the
panel discussion held after the plenary talks. Some of the
issues we feel are an outgrowth of the papers presented in
this session include:

• What will be the impact on the number of parameters
required in a speech recognition system based on
nonlinear statistical models?

If more parameters are required, then the benefits of such
an approach might vanish for small training sets. If the
number of parameters decreases, perhaps sensitivity to
speaker or channel will increase.

• If linear models work well for variations within a phone
as long as the time span is sufficiently small, might th
argue for the use of non-linear models to represent t
hidden component?

New and improved spectral estimation techniques ha
often not proven to provide substantial gains i
recognition performance, perhaps leading us to belie
the hidden component of the acoustic model is the ar
needing a better statistical model. However, non-line
techniques are also motivated by articulatory mode
where non-linearities are usually placed at the outp
level rather than embedded within the internal structu
of the model.

• Are the language models presented here only practica
an n-best rescoring framework, or can we envision usi
them to reduce the search space? Are there better way
integrate new language models with acoustic modeling
produce more efficient recognition systems?

When recognition performance is poor, or the sear
space is large, n-best outputs can be quite limitin
forcing one to sift through large numbers of competin
hypotheses that look very similar. New language mode
must find a way to limit the number of hypotheses pass
to higher levels of the system.
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SUMMARY

Traditionally, signals have been classified into two basic
types: deterministic, and stochastic. This classification
ignores an important family of signals known as chaotic
signals, which are deterministic by nature and yet exhibit
many of the characteristics that are normally associated
with stochastic signals.

In this talk, we begin by reviewing some important aspects
of nonlinear dynamics. This would then naturally lead into
a discussion of chaotic systems, how they arise, physical
phenomena that are known to be chaotic, and their practical
applications.

The second half of the talk wil l be devoted to the
characterization of chaotic signals and the theory of
embodology, with emphasis on time series analysis.
Specifically, we will describe the following notions:

• Takens’ embedding theorem

• Attractor dimension, and the correlation dimension

• Minimum embedding dimension, and its estimation using
the method of false nearest neighbors

• Lyapunov spectrum, and its estimation

• Recursive prediction, and how to implement it using
neural networks
CHAOTIC SIGNAL PROCESSING
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SUMMARY

This talk will raise some problems with the current
techniques used in acoustic modeling and suggest some
directions for future research. Firstly the connectionist/
HMM system known as ABBOT will be briefly introduced.
The talk will then progress to suggest a series of new and
largely untested applications of the EM algorithm in
acoustic vector and acoustic model estimation for automatic
speech recognition. These topics are under investigation at
Cambridge University and it is hoped that they will
contribute to the ABBOT system in the future.

It is acknowledged that the current acoustic vectors used in
speech recognition systems are a poor representation of the
speech signal. This is clear from speech coding work
whereby a standard LPC coder (e.g. LPC10e) may produce
unintelligible output in the case of certain speaking styles or
mild background noise.

Drawing from speech coding, we can aim to model the
parameters of source-filter model such as LPC. In such a
model the source is Gaussian white noise or an impulse
train. In conventional applications the LPC filter parameters
of voiced speech are estimated assuming the white noise
source, but it has been shown that an application of the EM
algorithm can provide a maximum likelihood estimate to
both the LPC parameters and the excitation parameters (the
period and phase of the impulse train) [1].

Drawing from speech perception we know that formant
locations are a important to vowel identity and that formant
frequencies are determined by vocal tract length and are
speaker dependent. The simplest speaker invariant
parameter is a formant ratio. However, we are not close to
incorporating this knowledge in current ASR system as they
generally work in the power spectra or cepstral domain. As
start in this direction is to estimate the power spectral
density as a Gaussian mixture and then to model the
trajectories of the Gaussian means [2].

Currently HMMs model acoustic vector densities. We have
shown that statistical models of posterior probabilities can

also be used [3,4]. However, the conversion of the poster
probabilities to likelihoods involves some approximation
which means that, as currently implemented, the traini
algorithm is not an EM algorithm. These approximation
aside, we have shown that we can train on posteri
probabilities and that this results in better models over t
Viterbi training [5].

It is interesting to consider the connectionist architectu
within the EM framework. We consider each unit a
estimating an indicator variable which has values of “fire
of “not fire”. We can estimate the MAP probability of firing
if we know both the input and the output to the network [6
Although this work is current ly computat ional ly
constrained by an exhaustive search it does propo
approximations applicable to large networks or the use
Monte-Carlo sampling.

A recent improvement has been the modeling of conte
dependent phones [8]. Here we assume an indica
variable not only for the phone class at a given time but t
phone context given the phone class. We have been abl
use connectionist models to estimate this variable which h
resulted in improved speech recognition accuracy and sp
of decoding.

Another promising candidate for acoustic modeling is th
hierarchical mixture of experts [7]. This is essentially
decision tree with a probability of branching associate
with each node. The EM algorithm may be used t
reestimate the parameters of the system. There are sev
practical aspects of this architecture that need to
addressed before it can be applied to large speech tasks
The HME can either be applied as a static pattern classi
and a Markov model used to model the dynamics in mu
the same way as connectionist/HMM hybrid systems or t
dynamics can be directly incorporated.

Finally, an acknowledged problem in speech recognition
that some speakers are much easier to recognize t
others. Out of ten speakers in a unlimited vocabulary re
speech evaluation it is not uncommon for the best spea
to have an order of magnitude lower error than the wor
SOME NEW USES OF EM IN ACOUSTIC MODELING
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speaker. Hence the overall error rate is dominated by a few
outliers (the goats). A proposed “EM” solution to this
problem is to label every speaker with an indicator variable
(sheep or goat) and use the observed recognition rate to
estimate the probability of being a goat. By weighting the
training set by these probabilities it is expected that the
avai lable model ing power can be better used and
the expected error rate decreased.

Another viewpoint on the same scenario is that the
goatiness factor is determined by the channel conditions.
We consider broadcast speech as a major source of acoustic
data for future speech systems. By considering the
confidence that the decoded speech came from a clean
source rather than a dirty source we hope to filter the
unending supply of broadcast speech and train in proportion
to the sequential MAP estimate of sheepishness. We hope
that this will liberate us from the very significant resources
required to construct today’s speech corpora and hence
result in significantly better speech systems.
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SUMMARY

In language modeling, a corpus of sentences is treated as a
set of observed outputs of an unknown stochastic
generation model, and the task is to find the model which
maximises the probability of the observations. When the
model is non-deterministic and contains hidden states, the
probability of a sentence is the average probability of each
distinct derivation (sequence of hidden states) which could
have generated it. For speech recognition, language
modeling is an appropriate tool for evaluating the
plausibility of different possible continuations (word
candidates) for a partially recognized utterance. For speech
or text understanding the derivations themselves are crucial
to distinguish different interpretations. For example:

(a) Charlotte is playing with her rabbit

(b) That rabbit gets played with a lot

(c) ?Charlotte’s father gets played with a lot

(d) (S(NP Charlotte) (VP is (VP (V playing with)
(NP her rabbit))))

(e) (S(NP Charlotte) (VP(VP is (VP playing))
(PP with (NP her rabbit))))

In (a), there is an ambiguity between an interpretation in
which Charlotte is playing accompanied by her (pet) rabbit
and one in which her plaything is a (toy) rabbit. In the latter
caseplay with is best analyzed as a phrasal verb andthe
rabbit as a direct object, predicting for example the
possibility of passivization in (b).

However, given the former interpretation,with is best
analyzed as introducing an adverbial prepositional phrase
modifier of the verbplay predicting the accompaniment
interpretation ofwith (as one possibility). The oddity of (c),
in which we are forced to interpret Charlotte’s father as a
plaything, is then a consequence of the fact that
passivization only applies to direct object noun phrases and
not prepositional phrases.

From the perspective of speech recognition, the alternat
derivations for (a) are not as important as the relativ
likelihood with whichrabbit may follow play with (though
accurate assessment of the likelihood with which a no
denoting a plaything rather than playmate will be followe
by is/was/gets/...played withmight well require both
modeling the distinct derivations and passivization.)

For interpretation, the relative likelihood of the distinc
derivations is crucial. Furthermore, the derivation mu
encode hierarchical consistuency (i.e. bracketing) to
useful. Thus, for (a) we need to know whether th
prepositionwith combines withplay to form a phrasal
transitive verb (d) or whether it combines with her rabbit to
form a prepositional phrase which in turn combines wit
the intransitive verbplay (e), because recognition of which
verb we are dealing with determines the difference
interpretation.

N-gram models cannot directly encode such differences
hierarchical organization which is why most stochast
approaches to text understanding have employed stocha
context-free grammars (SCFGs) or feature/unificatio
based abbreviations of them. Within this framework it i
possible to treat the grammar as a language model a
return the most l ikely derivat ion as the basis fo
interpretation.

However, there are a number of problems with th
approach. Firstly, SCFGs and their feature-based varia
associate a global probability with each grammar rule rath
than a set of conditional probabilities that a given rule wi
apply in different parse contexts. A number of experimen
by different groups have independently confirmed th
modeling aspects of the parse context improves t
accuracy with which the correct derivation is selected by u
to 30%. Most researchers are now experimenting wi
statistical parse selection models rather than langua
models within the text understanding community.

Secondly, SCFGs and close variants, unlike n-gram mode
are not easily lexicalized, in the sense that the contributi
of individual words to the likelihood of a given derivation is
LANGUAGE MODELING OR STATISTICAL PARSING?
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not captured. Those models which are lexicalized use word
forms rather than word senses to condition the probability
of different derivations. It is likely that considerable
improvement could be obtained by utilizing broad semantic
class information (such as thatrabbit can denote an animal
or toy) to evaluate the plausibility of different predicate-
argument combinations.

Selecting a correct derivation is only one aspect of the
problem of robust practical parsing for text or speech
understanding. Another bigger problem is ensuring that the
grammar covers the (sub)language. Language models offer
one po ten t ia l so lu t ion to th is p rob lem, as
estimation-maximisation (EM) techniques can be utilized
not only to find the (locally) optimal probabilities for
grammar rules but also to find the optimal set of rules (by,
for example, removing rules re-estimated to some “floor”
threshold probability). However, it is not clear that EM
techniques can be coherently utilized in this way with
statistical parse selection models which cannot be
interpreted as language models.

In the talk I will discuss the issues of parse selection vs.
language models, lexicalization of models and integrated
approaches to statistical rule induction as well as ranking in
further detail.
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This is an attempt to base a language model on a context-
free lexicalized grammar. A language model must be
statistical, and therefore simple enough so its parameters
can be estimated from data. Since it should reflect message
content, it must be lexical.

The lexical non-terminals will be related directly to the

words belonging to a vocabulary and will correspond to

the intuitive notion ofheadwords. Headwords are thought
to haveinheritanceproperties, and so the production rules

should basically have the form ( denotes the unique
sentence non-terminal located at the root of the tree)

(1)

In Eq. 1, denotes the unique word which has the

same name as the headword .

Figure 1 illustrates a possible derivation of the sentenceHer
step-mother, kissing her again, seemed charmed[1]. Note
that attached to the root node of the tree is the headword
corresponding to the main verbseemed of the sentence.

It is interesting to observe that abigram language model
can be considered to have the special headword form

(2)

Comparing Eq. 1 with Eq. 2, we see that the general
headword language model defined by Eq. 1 has essentially
the same parameter complexity as thebigram language

compared to that of thetrigram language model would have
the structure

(3)

where the notation means tha

is theleft brotherof and that is generated from

. Naturally, means that is theright

brother of .

We use the automatic transformational (AT) parser
Brill [2] to parse a large amount of text and thus provide

basis, in conjunction withheadword inheritance rules1, for
the collection of headword production statistics. Th
availability of an AT parser solves in principle the problem
of scarcity of data and of transportability. Any domain wit
sufficient text data provides sufficient parse data.

A language model is a device that provides to th
recogn ize r the va lues o f the probab i l i t i e

predicting the word given the

hypothesis about the string of the preceding word

V

s

s H→
H HG→
H GH→
H v H( )→

v H( ) v

H

s H→
H v H( )G→
H v H( )→ 1. That is rules of the type:the headword of a simple nounphrase

is the last noun;or the headword of a verb phrase is its first verb,
etc. Such rules have been derived by linguists [3] for use in t
IBM statistical direct parser [4]. Headword inheritance rules ca
also be derived automatically from data by use of information th
oretic principles.

s H→
H LB H( )∠ F= HG→
H RB H( )∠ F= HG→
H LB H( )∠ F= GH→
H RB H( )∠ F= GH→
H LB H( )∠ F= v H( )→
H RB H( )∠ F= v H( )→

H LB H( )∠ F= HG→
F H HG

H RB H( ) F= F

H

P wk w1 … wk 1–, ,( ) k
th

k 1–
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seemed charmedagainherkissingstep-motherher

seemed charmedagainherkissingstep-motherher

kissing

kissing seemed

step-mother

step-mother

seemed

Figure 1. An illustration of a possible derivation of the sentence “Her step-mother, kissing her again, seemed
charmed.”
For context free grammars these probabilities can be
computed by the method of Jelinek and Lafferty [5]. The

headword language model is particularly suited to best
resolutionwhen we use the hypothesis that the word strings
were produced by the process corresponding to the parse
specified by the AT parser applied to these strings. The
computation of such a probability involvesonederivation
only and is therefore linear with the length of the sentence.

Clearly, a large amount of parsed data is necessary to
adequately estimate headword production probabilities. In

fact, many more productions of the types and

will have non-zero probabilities than would

b ig rams of success ive words

. The reason is tha t in

and the headwords and
may correspond to words that are quite separated in the text
from each other.

Therefore, we must smooth efficiently the relative

frequencies obtained in the collection process. Let
denote an appropriateclassof the headword denote an

appropriate class of the headword . Then the appropriate
formula is

(4)

We have derived the classes based on the method
Mercer [6] applied to parse trees.
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