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Abstract 
Statistical signal processing approaches to speech recogni- 
tion have shown great promise recently in achieving high 
performance in well-constrained problems. These systems 
typically rely upon a hierarchy of finite state automatons 
(FSA’s) to defme sentence, word, and/or phone level gram- 
mars. In this paper, we describe a stochastic unification 
grammar system that is a generalization of the conven- 
tional Hidden Markov Model approach. Unification gram- 
mars concisely model context, providing a more powerful 
characterization of the acoustic data than the first order 
Markov process. We prove the parsing techniques required 
for this system by achieving the same performance with 
homogeneous layers of stochastic regular gr-818 as our 
best FSA-based HMM system. 

Introduction 
Statistical signal processing approaches to speech recogni- 
tion have shown great promise recently in achieving high 
performance in well-constrained problems. High perfor- 
mance, speaker-independent continuous digit recognition, 
for example, has been successfully demonstrated in the lab- 
oratory [Z] [ll]. This and similar systems rely upon a hier- 
archy of finite state automatons (FSAs) to define sentence, 
word, and/or phone level models [lo]. 

Many phonetic based recognition systems today perform 
poorer than word based systems on small vocabulary tasks. 
The hypothesis for this observed degradation in perfor- 
mance is that word models incorporate more contextual in- 
formation than low level HMM based phone models. The 
word models essentially have more discriminating power 
than the combination of phone models and a probabilistic 
automaton that describes words in terms of phones. The 
FSA’s used in these systems lack the ability to effectively 
communicate context between the phone models. 

Unification grammars (UG’s) [IS] have been developed 
to explicitly and Concisely model context. Whereas both 
Context-Fkee Grammars (CFGs) and Regular Grammars 
(RGs) require a multiplication of rules to capture such 
basic linguistic phenomena as subject-verb number agree- 
ment, a single unification grammar rule suffices to capture 
this same agreement. UG’s have become a popular formal- 
ism for natural language research [i’], but have seldom been 
applied to the speech recognition problem. This has been 
caused, primarily, by the lack of probability information in 
the formalism itself and the inability of processors for the 
formalism to manipulate statistical speech information. 

Weintroduce the notion of a stochastic unification gram- 
mar and describe a processor for the formalism. Stochastic 
UG’s provide a framework for Uniformly modeling all lev- 
els of the speech understanding problem. This includes 
the acoustic level, which has typically been modeled with 
FSA-based HMM systems. The processor correctly calcu- 
lates the probability of symbols based on the probability 
of observations and the rule probabilities. At desired lev- 
els, the rule probabilities may computed from training data 
using maximum-likelihood estimates [4]. 

We demonstrate the feasibility of a completely symbol- 
based approach by achieving the same performance with 
layers of stochastic regular grammars as our best FSA- 
based system. HMMs easily map to both stochastic RGs 
and FSAs, but the combined topdown and bottom-up 
parsing algorithm used in this system differs substantially 
from FSA processing techniques. Most importantly, the 
parsing algorithm offers computational advantages when 
hypothesis are needed more than once at the same time 
frame. This occurs frequently in large grammars and the 
proper treatment of this condition is essential for process- 
ing unification grammars appropriate for spoken language. 

A Stochastic Unification Grammar 
Framework 
In this section we introduce the concept of stochastic unifi- 
cation grammars and briefly outline our algorithm for pro- 
cessing them. The concept of chart parsing plays a promi- 
nent role in this approach, providing an efficient parsing 
mechanism. 

Definition: A stochastic unifiation gmmmaris a four- 
tuple G, = (VN,VT, P , ,S ) ,  where VN and VT are finite sets 
of nonterminals and terminals, S C VN is the set of start 
symbols, and P, is a finite set of stochastic productions 
each of which is of the form A,p + a, where A E VN, p is 
the probability of applying the rule, and a E (VN U VT).. 
Let the set of probabilities.of all k stochastic productions 
in P, with A on the left be {pi I A,pi ---t ai, i = 1 ,... ,k}. 
Then 0 < pi 5 1 and E:ZIpi = 1. The nonterminals and. 
terminals are feature-value pairs. 

Definition: A feature set is a set of feature-ualw pairs 
of the form f : V ,  where f is a constant (0-ary function 
symbol) and V is either a constant, a variable, or a feature 
set. A feature set may be indexed with a variable using 
the notation X + FS. The variable may be used elsewhere 
to denote the occurrence of the same feature set. 
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Stochastic RGs and CFGs are a subset of stochastic UGs, 
where the symbols of the grammar must be atomic (no 
features are associated with them). Additionally RG rules 
must conform to one of the following two forms: 

A  -+ w,B.  

A + w. 

where B is a single nonterminal symbol and w E V;. 
As an example of why such a formalism might be useful, 

consider the following simplified UG rules (CI and CO 
represent the input and output context, respectively): 

digits:CI ---> digit:(in:CI, out:COl, 

digits:CI ---> "". X mptj production 

digit:C ---> eight:C. X and other digit. 

sight:<in:(vousl:+), out:CO) ---> 

eight:Iin:<voasl:-), out:CO) ---> 

digit. :CO. 

ay, sight-td:CO. 

q, ay, sight-td:CO. 

sight-td:(vosml:+) ---> dx. 
eight-td:(vowsl:-> ---> t. 

These rules allow efficient expression of context between 
words in a digit grammar. They capture the phenomenon 
that a final / t /  becomes flapped when the following word 
begins with a vowel sound. It does this by forcing the 'in' 
context of the current word to agree with the 'out' con- 
text of the preceding word. For example, the digit string 
"88" may be pronounced as [ey dx ey t], but "83" must be 
pronounced as [ey t th r iy]. The same phenomenon also 
occurs in general English phrases such as "he ate eight ap- 
ples." In a grammar involving a larger vocabulary, general 
inter-word context can provide additional discrimination 
for better recognition performance. The savings in both 
representation and computation in these cases can become 
significant. 

Even in this small example, it is easy to imagine that the 
[ey] phone might be needed at the same time by the two 
different 'sight' rules. Grammars ausociate symbols with 
both observations (terminal symbols) and alternate expla- 
nations (nonterminal symbols), so that duplicate work in 
re-hypothesizing the same observations and partial sen- 
tence hypotheses may be avoided. This is in contrast to 
FSA where each candidate best path is maintained sepa- 
rately. Figure 1 illustrates this difference. 

Chart parsing provides mechanisms for efficiently pro- 
cessing grammars. In stochastic chart parsing, the goal 
is to find the best explanation of a sentence for a given 
utterance by finding the best explanation of symbols that 
combine to compose a sentence and that adjoin at frame 
boundaries (thereby modeling every frame of speech data). 
Chart parsing derives its name from the data structure 
used to avoid duplicate work: the chart. The chart con- 
sists of edges that represent the current state of various 
grammar rules in explaining the utterance. 

A stochantic chart edge is of the form 
[ i , r ,A ,a ,@, j ,p i ,p j ] ,  where i is the starting frame, r is the 

Deflnition: 

a 
-0 

Figure 1: Proceasing differences between layered automata 
and grammars: 1) networks expanded in layered automata 
and 2) symbols shared in layered grammars. 

production number, A  is the left-hand-side of the rule, a is 
a string of symbols that have been parsed, p is the remain- 
der of the right-hand-side symbols, j is the ending frame of 
this edge, pi is the initial probability, and pj is the current 
probability. 

The details of the chart parsing algorithm may be found 
in a separate paper [5]. Basically, it is similar to Earley's 
algorithm [3], augmented with unification 191 and probabil- 
ity [ E ] ,  but with a delayed commitment approach to chart 
edge scoring [l]. This algorithm operatea from left to right 
in a combined bottom-up and top-down fashion, providing 
terminal hypotheses at each time frame to lower levels and 
accepting completed hypotheses that began at some time 
in the past. 

A Hierarchy of Stochastic Regular 
Grammars 
In this section, we describe the chart parser as applied to 
regular grammars. This provides an indication that the 
ideis are appropriate for speech processing and calibrates 
the system with respect to existing FSA-based HMM sys- 
tems. 

Figure 2 represents the data interaction in a layered 
stochastic regular grammar system. It can process n levels 
of regular grammars, allowing expansion of more than one 
symbol in a rule as in CFGs, but without recursive ability. 
The sentence grammar dictates which hypotheses propa- 
gate to lower levels at each frame. Each grammar level 
in turn propagates hypotheses needed in order to success- 
fully return complete observations. The last level includes 
a set of grammars that represent an HMM for each phone 
(or word in a whole-word system). Appropriate reference 
data from this level is compared with the current input 
speech vector. The processor then incorporates the refer- 
ence probabilities into the current state of the parse and 
any completed hypotheses pass to the next higher level 
as observations. Hypotheses and Observations at each level 
propagate down and up at  each frame until all of the speech 
data may be explained by the formation of a complete sen- 
tence. 
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Figure 2: Grammar interaction. 

It is convenient to map existing HMM systems onto the 
stochastic RG framework. This will  SO aid understanding 
of the system. Delhe a hidden Markov model by the state 
transition matrix A = [aijlN,~ for states ql, ~ l , .  . . , qN, 
where 

aij = P[qj at t i- 1 1 qi at t ]  

and the symbol probability matrix B = [ b j j ~ ] ~ ~ ~  for refer- 
ence patterns wl ,wl , .  . . , w ~ ,  where 

bjk = P[wklqj]. 

Assume, without generality, that each model has a single 
absorbing (or stop) state, q". Then for all i ,  j ,  and k, 
form the following rules: 

qi, aijbjk --t wk, qj. 

An extra rule compensates for the fact that RGs end on 
observations (even if the observation is empty): 

qNN, 1.0 --.t E .  

For a given sequence of observations 0, these rules are 
consistent with the likelihood function 

and allow the RG to produce identical results to that of an 
FSA-based HMM. 

When continuous multivariate density functions are used, 
each wh represents a reference vector and its probability is 
determined at each frame by a Euclidean distance calcula- 
tion. In this case, the rules are of the form 

%aij -+ wk,qj. 

and the parser incorporates the probability of the reference 
vector into the current explanation of the rule represented 
by a stochastic chart edge. This separation of the prob- 
ability of an observation from its environment is essential 
to the layered chart parsing approach each observation 
is simply a symbol requiring an explanation from a given 
time and with a given initial probability. Note that in a 
stochastic UG system, context can be factored into the 
probability calculations, thereby producing a context sen- 
sitive distance measure. 

As a practical consideration, treatment of symbols in 
this manner mandates a different pruning strategy. This 
is iliustrated in Figure 3. In a stochastic chart parsing 

Beat 

Beat + 
Beam 

In P 

1 
Figure 3: Effect of chart parsing on pruning. 

system, the same symbol may be needed for several differ- 
ent explanations of the speech signal, but only the most 
likely representative actually becomes hypothesized. The 
probability of the completed observation, pj - pi, is then 
used in extending the chart edges of the remaining -la- 
nations. This leads to a situation where a lower probability 
explanation of the symbol may not only survive (in beam 
search, for example) where it otherwise would have been 
pruned, but the subsequent hypotheses using this symbol 
may actually give the more probable explanation. Since 
the chart parser expands only the most likely symbol, the 
less likely symbols at the same starting time cause no ad- 
ditional computation. 

Experimental Results 
Two recognition experiments have been performed to cal- 
ibrate the system: continuous digit strings 121 and a 1000- 
word Resource Management (RM) task [12]. Both systems 
use 18-element reference vectors with a 20 msec frame pe- 
riod and pooled covariance. Because of the grammars in- 
volved, chart parsing offers no advantage in the firat ex- 
periment and a small advantage in the second. Table 1 
indicates the relative size of the grammars. 

The continuous digit experiment consist8 of two lev& 
of grammars. The first grammar allows zero or more oc- 
currences of oh, zero - nine, a silence model, and a null- 
speech model. The second grammar contains the HMM 
models for each of these, converted to RGs as indicated in 
the previous section. Although multiple hypothesen of the 
same symbol at the same time occur in the HMM gram- 
mar, the hypotheses at this level correspond to reference 
vectors of one frame in duration and the FSA-based system 
evaluates these only once. 

Both systems obtain identical results when p r d n g  is 
not a factor ( i .e . ,  errors occur because of the models, not 
pruning). Due to the differences in pruning strategies, 
pruning affects the results when the In probability beam 
width drops below -90 and -135 for the grammar and au- 
tomaton systems, respectively. At these pruning thresh- 
olds, the ratio of the processing time of the grammar sys- 
tem to automaton system is 1.9. 
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Table 1: Grammars in the experiments. 

- 
1 1994 1172 I 517 I 

Task 1 Level I Rules 1 Nonterm 1 Terminals 
14 I 11 13 Dipits I 0 I 

2 I26111 I 13017 1 12001 I 

The 1000-word resource management task consists of 
three levels of grammars. The first level consists of vari- 
ous sentence patterns desired for the task, the second level 
maps word types (e.g., ’<ship-nm>’)  to words. The 
third level contains the EMM models for the words. 

Again, both systems obtain identical results when prun- 
ing is not a factor. Performance degrades below In proba- 
bility beam widths of -101 and -124 for the grammar and 
automaton systems, respectively. At these pruning thresh- 
olds, the time ratio of the grammar to automaton system 
is 1.1, but bear in mind that chart parsing offers an advan- 
tage only in the level 0 sentence pattern grammar. 

Table 2 summarizes the results of this section. The time 
ratios indicate that the overhead of chart parsing is slightly 
less than a factor of two, and that even for small perplexity 
grammars (perplexity 9 for RM), the chart parsing method 
begins to compensate for this overhead. 

Table 2: Results of experiments. 
Task 1 RG/FSA time I RG beam I FSA beam 

Dinits I 1.9 I -90 I -135 

Conclusions 
We have demonstrated an approach to speech recognition 
in which the entire recognition process, including acous- 
tic processing, consists of a hierarchy of grammars. We 
have shown that this approach generalizes traditional FSA- 
based EMM systems and that a stochastic chart parsing 
algorithm produces the exact same solutions an exist- 
ing FSA-based system. The shift from automata to gram- 
mars allows efficient processing of complex language mod- 
els by hypothesizing symbols once per frame, no matter 
how many times they are needed. 

As an added benefit, the chart parsing algorithm allows 
parallel processing of lower level hypotheses autonomously 
with no fundamental algorithm changes. Each level is sent 
a list of symbols for which it must calculate probabilities, 
and these lists may be split across many processors. Fur- 
ther, because the algorithm at each level of the system is 
identical, each processor executes the ezact same program. 
This facilitates expansion of the system to arbitrarily large 
vocabularies and complex grammars. 

The layers of regular grammars used in the experiments 
are completely compatible with our UG framework. Fu- 
ture work will focus on development of grammars that 

make effective use of contextual information, and on the 
development of more robust distance measures that com- 
prehend this information. Storage redamation becomes 
extremely important in the UG framework and the exten- 
sion of this system to spoken language systems requires a 
new approach to this problem. We believe, however, that 
the introduction of the stochratic unification grammar is a 
step toward a true speech underatanding system. 
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