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ABSTRACT 

Although Hidden Markov Models (HUMS) can 
effectively encode duration information, 
seeding of an HMM with the correct 
duration information is important in 
obtaining high performance speech 
recognition. Hierarchical clustering 
techniques have been shown to be a 
powerful tool in Dynamic Time Warping 
systems for building speaker independent 
reference models, but direct application 
of clustering techniques to HUMS is not 
straightforward. In this paper, a 
clustering algorithm is introduced that 
allows clustering of H U M  models directly. 
This clustering algorithm also determines 
the appropriate duration profile for a 
recognition unit. High performance 
speaker independent digit recognition on 
a studio-quality connected digit database 
is demonstrated using this algorithm. 

INTRODUCTION 

Hierarchical clustering techniques have 
been shown to be a powerful tool for 

reference templates for speaker 
indepen ent speech recognition using 
Dynamic Time Warping <DTW) C11. 
Application of clustering techniques to 
continuous distribution Hidden Markov 
Model (HMM) based systems is not 
straightforward. Many existing HMM 
systems have bootstrapped existing tried 
and true reference template generation 
procedures for DTW. Clustering 
techniques, however, are t ically most 
successful when they dugicate the 
distance comparison process used in the 
recognition system. The problem we 
examine in this paper is that of building 
optimal reference models for Hidden 
Markov Model systems. 

Our experiences with HMM based speech 
recognition C21 indicate that one of the 
primary reasons H M M s  give better 
performance than corresponding DTW 
systems is that the HMM system does a 
better job of modeling the time course of 
the speech signal (otherwise known as the 
problem of segmentation). We believe 
that this is a byproduct of the 
supervised training procedures that 
strictly enforce model optimization by 
optimizing the probability of the 
orthographic transcriptions of the 
utterances given a set of reference 
models. HMM models are continually 
refined in supervised training until they 

can quite accurately describe the time 
course of the training data. This has 
been verified using our HUM trace 
development tool C31. Generally, when we 
observe the spectrographic trace of a 
recognition error, it is a result of a 
corresponding error in time alignment. 

This time alignment problem is confounded 
by the other free dimension in HMM based 
recognition using continuous densities: 
choice of the number of states in an 
initial seed model. Performance, as we 
will show, even in the simplest of tasks 
is sensitive to the seeding process. 
Appropriate hand seeding of reference 
models generally requires an extensive 
knowledy of the recognition units and 
the app ication. We seek, therefore, a 
clustering procedure that, in addition 
performing some type of basic clustering 
for generation of spectral information in 
reference models, computes an optimal 
number of states for reference seed 
models. 

Since the number of states in a model 
does not change in supervised training, 
it is crucial that the initial duration 
of a model be correct. Adding free 
variables to account fro more flexible 
duration models can many times degrade 
performance. Let us begin by 
demonstrating the importance of duration 
in seed models for an isolated digit 
recognition task. 

THE IMPORTANCE OF SEED MODEL CONSTRUCTION 

For the remainder of this paper we will 
consider digit recognition tasks on 
studio quality data, using the TI 
continuous digit database C31. This is a 
225 speaker database that has been 
dialectically balanced. Consider first 
the problem of isolated digit 
recognition. The recognition system we 
will use consists of a standard 
continuous density HMM system. One 
important feature of this system is that 
it uses a top-down control structure 
which models every frame of speech data. 
Explicit endpointing is not used. 

The acoustic front-end is also a standard 
speech recognition front-end that uses 
LPC-derived principal spectral 
components, auxiliary energy measures, 
and differential features, as shown in 
Figure I. The system uses a single, or 
pooled, transformation matrix to 
de-correlate features f21 . 
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The histogram depicting the overall 
durations for the isolated digit portion 
of the database is shown in Figure 2. 
These were computed by handmarking the 
isolated digits. We see that the average 
duration of a digit is 400 msec, or 20 
frames at a 20 msec frame rate. In this 
first experiment, we will use one model 
per digit. We choose a nominal exemplar 
for each digit, and sample it at frames 
rates of 20, 30, 40, 50, 60, 70, and 80 
msec. This results in models that have 
20, 14, 10, 8, 7, 6 ,  and 5 states, 
respectively. Each model will have the 
same number of states (fixed state 
models). 

Simple rogressive HMM models were used 
(at eacg state either a self-transition 
can occur, or a transition to the next 
state). Hence, the implied duration 
model is a single exponential density at 
each state. These seed models were 
re-estimated on the database using 
supervised training, and evaluated. 
Performance is shown in Figure 3. 

We see that best performance results when 
using 14 or 20 state models. Recall that 
the 20 state models correspond to 
representing every frame of reference 
data in the model. We have repeatedly 
seen that, with Huu recognition systems, 
performance is optimal when reference 
models model every frame of data. We 
also see that the initial number of 
states in a reference model strongly 
correlates with performance. Initial 
seeding of models with the proper 
duration model is important. 

In the next experiment, we add skip 
states to these same models. The results 
are shown in Figure 3. Note that 
performance actually degrades for all 
models except the 14 and 20 state models. 
These models, because they model every 
frame of data, when trained, converge to 
the correct duration models. The other 
models, when skip states are added, have 
trouble converging to a solution as good 
as without skip states. This further 

re-estimation to get stuck in local 
optimum, and not converge to a global 
optimum. 

It is interesting to note that the 30 
state model included in this experiment 
actually begins to take on the appearance 
of two models in one, because the initial 
30 states are more than required for 
modeling a digit. The typical path 
through this model usually alternates 
between choosing even numbered states and 
odd numbered states. 

Next, we compared the fixed state models 
with skip states to variable duration 
models. The variable duration models 
were constructed by choosing an initial 
seed model whose length (number of 
states) was the average duration for that 
digit. This effectively introduces a 
penalty into the Hyu recognition for 
deviations from the nominal average 
duration of a digit. Performance is also 

highlights the tendency of HMM 

shown in Figure 3. Here we see that 
variable duration models perform as well 
as the fixed state models. 

HUM CLUSTERING WITH DURATION 

Since we have demonstrated that it is 
important to seed an HMM with the models 
that have the optimal number of states, 
we seek a clustering algorithm that will 
automatically determine the number of 
states for seed models. K-MEANS 
clustering procedures E53 have been 
hi ly successful in both VQ ap lications 
C6f and speech recognition El,%. Here, 
we propose a simple modification to the 
K-MEANS procedure that allows duration to 
be included in the clustering procedure. 

Each token in the training database for a 
particular digit is converted into an Huu: 
with skip states by seeding each state in 
the model with an observation vector 
corresponding to each feature vector in 
the token. Since we model every frame of 
data, the transition probabilities are 
seeded such that the probability of 
progressing is equally as likely as 
staying or skipping. Thus, the mean 
duration of this model will be the actual 
duration of the token. 

The K-IEANS clustering algorithm requires 
a distance matrix as input, which 
contains a distance value comparing every 
token to every other token. In previous 
DTW systems, this amounted to performing 
DTW matching and entering the resulting 
distance score in this matrix. We apply 
an analogous procedure to HMM*s, except 
that the distance score now is computed 
as the probability of the model for token 
A given token B: 

distCA,B> = PROB(mode1 Mobs. for B) 

Note that this distance metric is not 
symmetric, distCA,B) # dist(B,A). 

This distance matrix is the input into 
the standard K-MEANS clustering 
procedure. The output of the K-MEANS 
clustering is a set of cluster centers, 
which are actually elements of the 
training set. The HMM seed models are 
then generated by performing 
re-estimation using only the elements in 
the cluster. The seed model is the 
cluster center, and the number of states 
in this seed model is taken to be the 
number of states in the cluster center. 
The cluster center is re-estimated by 
using supervised training over all 
elements in the cluster. The output of 
the process, the recognition seed models, 
are then typically re-estimated over the 
entire training database. 

This clustering algorithm represents two 
significant departures from previous 
algorithms. First, robabilistic 
distance measure is useda is distance 
measure computes the distance between 
token A and token B as the probability of 
token A given an Hyy model for token B. 
Second, and most importantly, the 
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duration of a model is factored into the 
distance measure, thereby allowing the 
clustering to compute cluster centers 
that are optimal with respect to spectral 
information and duration. Since this 
clustering is performed on recognition 
units, the duration is captured in the 
context that it was produced. 

Rather than decoupling duration from the 
model, such as using some postprocessing 
type measures C73. duration profiles for 
recognition units can be explicitly 
modeled. This is important for large 
recognition units such as whole word 
models, where duration has a strong 
acoustic correlate. Capturing duration 
differences in context allows the HldM 
model to effectively encode this 
information. We believe such duration in 
context issues are important even at the 
phonetic level. 

EBERIMENTAL RESULTS 

The experiment described above was 
repeated, this time using one cluster per 
digit. The training database was 
clustered using the duration in context 
clustering. The performance, shown in 
Figure 3, was slightly better, than the 
variable state system. 

There are three important observations to 
be made. First, in the case of one 
cluster, the number of states in each 
model was not simply equal to the average 
duration of the digit in frames. The 
models produced by clustering had an 
average of 16.5 states per digit, while 
the variable number of states experiment 
had an average of 21.2 states per digit. 
Clustering produced models in an 
automated way that had on the average 20% 
fewer states. Recalling that these 
digits were handmarked, this difference 
could not be attributed to experimental 
error. 

The second observation is that 
performance improves, of course, with the 
number of clusters. As the number of 
clusters increases, the duration profile 
for the digit models more than just the 
duration histogram for the digit. For 
instance, in the case of the digit "ONE". 
The mean duration of the digit "ONE" in 
the training database is 18.4 frames. 
with a standard deviation of 3.8. The 
clustering algorithm, for the case of 
seven clusters, chooses six clusters that 
are within one standard deviation of the 
mean (20. 19, 21, 19, 15, 13, and 17 
states), and one cluster that is outside 
one standard deviation (13 states). 

Thus, the clustering, in addition to 
modeling spectral variations, is modeling 
duration in an woptimal" sort of way. 
(This is verified by the fact that 4 of 
the seven clusters were associated with 
male speakers, and the other three 
females. Also, the performance with two 
clusters (one male/one female of 

approximately the same number of states) 
indicates that spectral variations take 
precedence over duration until there are 
enough degrees of freedom to model both. 

This clustering procedure has been 
evaluated on a connected digit 
recognition task. Duration information 
is, in fact, far more significant in 
continuous digit recognition. Using the 
8 cluster per digit s stem, and the 
pooled covariance approacg, a 4.7% string 
error rate was achieved. This was 
reduced to 3.5% by invoking state 
specific transformations C21. This is an 
unknown string length experiment in which 
recognition utterances can be any length. 
Performance in the 8 cluster case was 
further improved to 3.1% by incorporating 
a sex constraint, that is, forcing an 
input utterance to be recognized with 
either all male or all female models. 

CONCLUSIONS 

We have introduced a clustering procedure 
that allows direct generation of HUM seed 
models. Good performance was 
demonstrated on a digit recognition task. 
future work will be directed towards 
developing more powerful methods of 
investigati contextual effects. We 
have recen3y developed an architecture 
for speech recognition that appears to be 
a very promising approach for modeling 
acoustic context C81. 

Efficiently modeling contextual 
information in the speech recognition 
process is very important to 
Clustering seems to consistently be a z e  
to identify and represent various 
acoustic contexts. However, we introduce 
these models into the recognition process 
with no guarantee that because they are 
good representational models, they will 
also be good discrimination models. On 
the other hand, even modeling a simple 
contextual parameter, such as sex, 
requires an unacceptable increase in 
complexity in an HMM. Future research 
will be directed towards using more 
powerful grammar formalisms to model 
acoustic context. 

clusteri 

C13 

c23 
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PRECONDITIONING 
Sample at 8 IdIz 
First-Order Difference 

ACOUSTIC MODEL 
10-th Orde; LPC Autocorrelation-Based 
20 ms Frame Period 
30 ms Window Length, Hamming Weighted 

SPECTRAL CONVERSION (14 MEASURES) 
14 MEL-Spaced Filters 
Normalized Filter Amplitude (Log) 

SDeech Level 
AUXILIARY MEASURES (3 MEASURES)> 

Nbrmalized -Frame Energy (Log) 
T-Func tion 

DYNAUIC MEASURES (15 MEASURES)) 
40 ms Difference Of Frame Energy 
40 ms Difference Of Spectral Amplitude 

Select 10 Most Significant 
Spectral Eigenvectors 

Select 4 Most Significant 
Spectral Difference Eigenvectors 

FEATURE SELECTION - PRINCIPAL COMPONENTS 

FEATURE TRANSFORUTIONS (18 FEATURES) 
Pooled Covariance Transformation 

Figure 1. The Acoustic Front-End 
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D u r a t i o n  i n  20  msec Frames  

F i q u r e  2 .  A H i s t o q r a m  o f  D u r a t i o n s  For  
I s o l a t e d  D i g i t s  

(a) Fixed States: 
Prog. Models With Skips 

# of States 
5 6.2% 7.4% 

6 4.4% 6.7% 

7 3.6% 4.4% 

8 2.2% 2.9% 

10 1.4% 1.6% 

14 1.3% 0.7% 

20 1.7% 0.7% 

30 High 0.7% 
Variable 0.8% 

(b) Clustering Performance 
No. of Clusters: Word Error Rate 

I 0.71 

2 0.3% 

3 0.4% 

4 0.3% 

6 0.3% 

5 0.3% 

7 0.2% 

8 0.2% 

16 0.3% 

Figure 3. Performance On Isolated Digit 
Recognition Using Clustering 
(Percent Word Errors) 


