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The FIT based cepstral method of human speech pitch (or 
fundamental frequency) determination is known to be accurate 
and reliable in studio quality environments, however, it leaves 
much to be desired at lower signal to noise ratios. Cepstral 
pitch determination techniques, which are a special case of the 
more general t h q  of homomorphic signal processing. rely 
on the log operation to deconvolve the pitch sequence from the 
vocal uact response sequence. Classical cepstral processing 
modcls do not account for noise added to the signal. In this 
paper, we develop a noisy cepsual signal model for speech 
processing and we propose two Singular Value Decomposition 
(SVD) based approaches which greatly enhance cepstral based 
pitch estimation performance in noisy environments. 

Speech Production and Cepstral Pitch Determination 

Voiced speech pmduction can be modeled reasonably well 
as a pseudo pulse uain (pitch sequence) convolved with a linear 
system (vocal tract impulse response). Speech is considered 
wide sense stationary over short time segments (20 - 40 msec) 
[I] which makes analysis possible over short time windows 
(M frames). We assume that the r-domain description of the 
speech signal is modeled by [21, [31 

S (2) = H ( 2 )  P ( 2 )  (1) 

where H ( z )  is the 2-transform of the vocal tract response se- 
quence and P ( z )  is the r-transform of the pitch sequence. 
Analytical expressions for H ( z )  and P(r )  may be found in [2] 
or 131. We may use homomorphic filtering techniques to sepa- 
rate the multiplicative rclationship in ( I )  using the complex log 
operation thereby causing the pitch cepsmm and the vocal tract 
response cepsmm to occupy approximately disjoint quefrency 
spaces [2], [4]. Practical implementations of cepstral pitch de- 
termination.may be obtained from 141 in which it is shown 
that the Inverse FFT of the log of the magnitude of the FIT 
provides us with the real version of the quefrency. The con- 
nections between the complex cepsmm and the real cepsmm 
(usually denoted by just cepsmm) an shown in [21 and [31. 

The Noise Fmblem 

It is easy to see that homomorphic filtering (cepstral) tech- 
niques will not offer good performance in noise. Returning to 
( I )  and taking the complex log operation, we find that 

log [S ( z ) ]  = log [H (2) P (r)] = log [H (211 +log [P (.)I. 
(2) 

The separation of S(z) into its constituent parts works out very 
neatly assuming that no noise is added to the system. On the 
other band, if noise is added to the system, we obtain 

log [S (z )  + N ( z ) ]  = log[H ( z ) P ( z )  + N (z)] . (3) 

A Cepstral Model for Speech Signals in Noise 

Manipulating (3) yields a noisy cepsual signal model . .  

which clearly exposes the desired signal component in the fist 
term of the right-hand side. We shall find great utility in 
going to vector and matrix notation at this point following a 
discretization of equation (4). 

?he appropriate discrete Fourier uansform (DIT') equiva- 
lent of (4) is 

1% [ H ( k )  P ( k )  + N (k)l = 1% [H (k) P ( k ) l  

where k = 0, ..., M - 1 is the discrete normalized frequency 
variahle. We shall also stay consistent with the notation found 
in [21 andJ31 for representing the log of a general function, 
X ( k ) ,  as X (k). Thus, we represent (5 )  in vector form as 

P = Z+ log [l + D-'n] (6) 
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where 

(7) 

M X I  

D =  
~ ~ Q ~ [ H ( O ) P ( O ) , H ( ~ ) P ( ~ )  , - . . , H ( M ) P ( W I , , M .  

(9) 

We shall refer to various aspects of this signal model as we 
bring out different results from our preliminary investigations. 

SVD Based Cepstral Estimates. The MUSIC Approach 

Schmidt [SI in 1979 formally proposed an SVD based al- 
gorithm from which to estimate the power spectral density 
(PSD) of time series observations emined by sets of indepen- 
dent sources. Of course our application and use of the algorithm 
is in a much different framework, nevertheless it still applies. 

If oui data in (6) is structured into a Toeplitz data matrix, 
then a wide variety of techniques can be used to detect the 
simple pitch harmonic in the quefrency domain. Pioneering 
work in using the SVD (eigenvector method) has been done by 
Tufts and Kumaresen [l  I]' in estimating signal parameters of 
noise speech-like signals. The MUSIC method is one such 
method which employs the SVD for estimating the Power 
Spectral Density (PSD) of a signal. It may be written compactly 
as [6]: 

(10) 
1 

OM", ( w )  = 

andUiistheithsingularvectorofthedatamatrixX = UBV'. 
This technique essentially uses the estimated noise subspace, 
given by {U,+1, Up+z , .  . . , U N ]  to obtain a high resolution 
PSD. 

The MUSIC method works well with narrow-band signals 
in additive white Gaussian noise. In our application, the noise is 
approximately white within a given data vector, but the noise 
power (and the signal to noise ratio (SNR)) varies from one 
vector to the rick We therefore propose a technique which 
will tend to equalize the noise power and at the same time 
de-emphasize vectors with lower SNRs. 

Noise Equalization via Vector Normalization 

We start with an original data matrix, X (dimension M x 
N ) ,  structured in a Toeplitz form. We then represent our data 
matrix as a set of N rows of M x 1 column vectors by the 
notation 

X=[xllxzl"'IXN]. (12) 
If we form a diagonal mamx, D, from the column vector norms 
of X in (12). i.e. 

D = diag(IIxil1 llxzll I '", IIXNII) (13) 

then we may form a normalized output matrix, Y, from X and 
D as 

Y = XD-'. (14) 

The D matrix acts as a primitive whitening filter on the original 
data matrix, X. If I; = 8 + fj; where T; is the "noise" com- 
ponent corresponding to log (1 + D-'n) , then I\?iil\ --111411 
at low SNR(< OdB). Normalizing the data vectors as shown 
in (14) will tend to equalize the noise power in each vector. 
This technique will also tend to de-emphasize the lowest S N R  
vectors. If equalization is applied to the data before MUSIC, 
we will call it equalized MUSIC or E-MUSIC. 

Before leaving this section it is worth mentioning that other 
variants of the SVD based PSD estimator exist. One such 
variant is the eigenvector method of Tufts and Kumaresan [I 11, 
[13], and [I41 which is similar to the MUSIC method except 
that the singular vectors used to obtain the spectral estimates 
are weighted by their respective singular values, 0,. 

Simulation Results Using Real Speech Data 

In this section we show our results from simulations using 
the Texas Instruments (TI) pitch database mentioned in [SI. 
The overall characteristics, in terms of signal-to-noise ratio, of 
the database are shown in Figure 1 [SI. Data were obtained 
over telephone lines, thus introducing a variety of channel 
conditions into the original speech. Some of these channel 
conditions were quite difficult to model. Reference files were 
generated to optimize synthetic speech quality [8]. These 
reference files were used to evaluate the performance of the 
pitch determination algorithms on the database. 

Figures 2, 3, 4, and 5 show liftered (filtered in cepstral 
domain, after [9]) cepstrums in the range of the desired pitch 
peak. Voiced and unvoiced frames were excised from the TI 
pitch database. Standad FFT cepsual processing methods, as 
well as our new FFI-MUSIC cepsual methods, were used to 
generate the cepsmms of the representative voiced and un- 
voiced frames, respectively. Clearly, the FFI-MUSIC cepsaal 
method finds a distinct peak in the correct location for the pitch, 
whereas the FFTFFT cepsual generator fails. 

Figures 6 and 7 show dependence on window length of 
gross pitch error given that we know a priori that the signal was 
voiced. This dependence was predicted by Verhelst and Steen- 
haut, in [IO], specifically for the cepsr" case. For the more 
general case, this dependence was predicted by Picone et. al., 
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in [l l] .  In Figure 6 we show, for a correlation mamx column 
vector length of 180 (from a 240 sample space corresponding to 
30 msec of speech), and taking 14 singular vectors as "signal" 
subspace vectors, performance for the regular MUSIC c e p s d  
method and our E-MUSIC cepsaal method. The E-MUSIC 
method has statistically tetter performance associated With it 
when other parameters are not adjusted optimally. It suffices 
to say that since the noise spread of the data base was never 
less than 5 dB SNR, we were unable to verify our E-MUSIC 
cepsual method Our E-MUSIC method, hough  preliminary 
investigations, does not show significant improvements over 
MUSIC for signals greater than 0 dB SNR. However, when the 
SNR is at or slightly below 0 dB. we have seen significant im- 
provements with E-MUSIC over MUSIC on a number of test 
cases. We show, in Figure 7, an optimal window length found 
at the mugh for the above parameters, using the FITMUSIC 
cepsual p m s s i n g  method This optimal was found to be 11 
msec and was used in a number of simulations. 

For a comlation ma& column vector length of 180 and 
a fixed long window length of 64, we show, in Figure 8, the 
ermr dependence on the number of "signal" subspace vectors. 
The MUSIC and E-MUSIC methods are compared Again, 
statistical outperformance of the E-MUSIC in this case is due to 
unoptimally adjusted parameters (in this case window length). 
These curves approach each other as other parameters become 
optimally adjusted. Also, we should note that it is no accident 
that the optimal number of signal subspace vectors is at 14. It 
turns out that 12 is the optimal LPC order to use for processing 
this database. 

In Figure 9. we show consecutive cepsua from our FFT- 
MUSIC method for one of the more difficult speech files in the 
database. We compare this to the FIT-FFl generated cepstra 
in Rgure 10. From the figures we see that a more clearly 
visible pitch track is observed from the MUSIC generated 
cepsua The gross pitch error, given a priori that a frame 
is voiced, was reduced to 3.11 W for the endre database of 
3 minutes of speech from 38 speakers. The standard FFT- 
FIT cepstral method produced a gross pitch error of 26.14 
90. This performance improvement demonsuates a significant 
enhancement to deconvolution problems, in general, when we 
are processing noisy signals. 

Finally. Figure 11 shows our "optimality surface" for our 
two parameters of correlation manix vector length and number 
of signal subspace vectors. The window length for the data 
was f i xed  at our discovered optimal value of 11 msec. 

Conclusions 

We have looked at a new technique for pitch determination 
in the quefrency domain using a modified SVD based approach. 
We have shown that significant enhancements to cepsual pitch 
determination are possible with the FFFMUSIC cepstral pro- 
cessing method. Furthermore, we have demonstrated statisti- 
cal improvement, for unoptimally adjusted parameters. of the 
E-MUSIC method, introduced in this paper, over the MUSIC 
method 

Since traditional cepsual pitch determination techniques 
involve deconvolution, we have also demonstrated pelf0IIIlmCe 
enhancements to deconvolution problems, in general, using 
our FFT-MUSIC cepsual generation methods. We expect this 
improvement to have impacts in other disciplines as well. 

We expect we can improve on our results by intemring the 
FIT-MUSIC cepsual processing method with other algorithms 
which depend on accurate cepsaal coefficient generation. Also, 
we can improve our msults by integrating our method With more 
intelligent algorithms such as dynamic programming optimiza- 
tion algorithms and Markov models. 

Since many of the c a n t  state-of-the-an pitch uacking 
techniques depend on LPC, we believe that by lowering the 
SNR characteristics of the datahase, we will outperform such 
techniques. Such outperformance is simply due to the fact that 
the threshold breakdown for the MUSIC technique (based on 
the SVD) is lower than LPC techniques. This will especially 
be true if we use our E-MUSIC method in place of MUSIC fur 
getting at the cepsmm. 

Finally, we note that combining appropriate PSD methods 
produces a whole family of possible algorithms for deconvolu- 
tion with different levels of performance and computation. We 
will investigate other combinations in the future 
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Figure 1 :  Noise Characteristics of Pitch Database 
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