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ABSTRACT

Speech recognizers trained in one
condition but operating in a different
condition degrade in performance. Typical
of this situation is when the recognizer
is trained under normal conditions but
operated in a stressful and noisy
environment as in military applications.
This paper reports on recognition
experiments conducted with a "simulated
stress" data base using a baseline
algorithm and its modifications. These
algorithms perform acceptably well (1 %
substitution rate) for a vocabulary of 105
words under normal conditions, but degrade
by an order of magnitude under the
"stress" conditions. The experiments also
show that the speech production variation
caused by noise exposure at the ear is far
more deleterious than ambient acoustic
noise with a noise cancelling microphone.

1. INTRODUCTION

In military environments such as a
fighter cockpit, the speech recognizer has
to operate reliably in high ambient noise
and with the pilot under stress. However,
the required training is usually performed
under quiet and non—stressful conditions.
Psychological and physiological stress on
the pilot manifest themselves as
variabilities in the acoustic signal
produced. Noise in the cockpit affects
the acoustic signal in two ways: as
additive noise signal at the microphone,
and more importantly by influencing speech
production to overcome noise levels in
speaker's own ears This latter effect is
known as Lombard effect [1].

This effort was funded under
N00039—85-C-0162 monitored
of USA.

* ATI Bell Laboratories, Naperville,
111.60566

In this paper we describe some
recognition experiments conducted on a
"simulated stress" data base collected by
Texas Instruments. The data base
"simulates" stress by eliciting
stress—like changes of the acoustic signal
by asking the speaker to vary vocal effort
levels, and also by exposing 95 dB pink
noise at the subjects' ears to produce
Lombard effect. Experiments were also
conducted to study the effects of additive
noise as opposed to Lombard effect.
Section 2 describes the data base.

Section 3 describes briefly the algorithms
investigated. Section 4 presents the
various experiments conducted and Section
5 presents the conclusions drawn from the
experiments.

2. "SIMULATED STRESS" DATA BASE

Psychological and physiological
stress on a speaker manifest themselves as
variabilities in the acoustic signal
produced. Typical of the variabilities
are the changes in the spectral slope,
fundamental frequency, formant locations,
level and duration of the acoustic events
of the speech signal[2]. Stress—like
degradations of the speech signal were
elicited by asking the speaker to produce
speech with vocal efforts/effects
corresponding to Normal, Fast, Loud,
Shout, and Soft conditions as well as with
Noise Exposure (95 dB) in the ears. The
vocabulary consisted of 105 words
including monosyllabic, polysyllabic and
confusable words such as "one",
"destination", "advisory", "six", "sixty",
"fix" etc. Training data consisted of 5
samples of each of the 105 words in a
random order under normal conditions, and
test data consisted of 2 samples of each
word under each stress condition listed
above. Data were collected from 5 adult
male and 3 adult female speakers, and
digitized at a sampling rate of 20 kHz
using a 16-bit A/D converter. The data
used in our experiments were downsampled
to 8 kHz from 20 kHz by means of a
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downsampling program. Figure 1 shows the
wideband spectrograms of the word "zero"
(8 kHz) under the six different
conditions.

3. RECOGNITION ALGORITHMS

3.1 Baseline Method (PSC)

The baseline algorithm investigated
is called the principal spectral
components (PSC) method and is described
in detail in [3]. Figure 2 shows the
generic block diagram of the method.

amplitudes (on a dB scale) normalized to
the frame energy using a simulated filter
bank. A critical-band filter bank [4] was
used in the study. The filter bank
amplitudes constitute a vector that may be
characterized as normally distributed with
mean vector depending on the
word(hypothesis), and a covariance matrix.
This covariance matrix may be estimated by
pooling all available data for the entire
vocabulary. Implicit in this process is
the assumption that all frames are
statistically independent and have the
same covariance matrix. A reference
template, then, consists of a sequence of
hypothesis—dependent mean vectors of
filter bank amplitudes, and its
statistical variability is described by a
single covariance matrix. The recognition
problem is to compute, given the input
characterization, the likelihoods
corresponding to each word hypothesis, and
choose that with the largest likelihood.
This corresponds to maximum likelihood
decision.

In general, the amplitudes of
adjacent filters are highly correlated and
provide potential for reduction of
dimensionality of the feature vector. The
filter bank amplitudes are rotated by the
eigenvectors of the covariance matrix so
that the resulting transformed features
are statistically uncorrelated [5]. These
features are ranked in decreasing order of
statistical variance (eigenvalues), and
the least significant features are
discarded resulting in a dimensionality
reduction. Finally each of these new
features is scaled so that its variance is
unity. The resulting features are called
principal spectral components(PSC), and
previous studies have established
correlations with perceptual space for
certain classes of sounds [6]. A
Euclidean distance in this feature space
is used as the metric to compare input and
reference frames of speech data.

3.2 Enhanced Method (PFV)

The energy—time profile of a speech
signal appears to be rich in information
for human recognition. It is only
reasonable to include the rms energy of a

frame of speech signal as an additional
feature to the filter bank spectral
amplitudes of the the PSC method. The
enhanced set can again be orthogonalized
statistically as in PSC method, and the
higher variance components chosen. The
resulting vector is called the Principal
Feature Vector (PFV). The Euclidean
distance metric and the statistical
optimality of maximum likelihood decision
is maintained.

3.3 Parameters

The following parameters were used in
the algorithms:

LPC analysis: Autocorrelation Method
Hamming Window

LPC order :10
Frame Period: 20 ms / 10 ins
Analysis window: 30 ms
Number of Filters: 14
PFV/PSC dimensionality: 10

4. EXPERIMENTS AND RESULTS

Training was done from training data
collected under normal conditions. There
were 5 tokens of each word, which were
time aligned using dynamic time warping
(DTW) algorithm and averaged. Each of the
"stress" conditions was tested using the
following methods:

In all the recognition tests, a decision
was forced. That is, the ability to
reject any input without classifying into
one of 105 words was disabled. Table 1
shows the substitution rate obtained for
each of the condition and the average ms
energy level relative to NORMAL condition.
Note that adding the ms energy as a
feature reduces the error by as much as
30%, and a finer temporal description of
10 ms frame period provides additional 10%
reduction. In all cases, the SHOUT
condition performance is significantly
worse than the other conditions, and the
differences in performances for SHOUT due
to the recognition algorithms is not
statistically significant. Also there is
no significant change in the performance
under NORMAL condition, which is already
excellent for the baseline system. A
further breakdown of the error rates by
speaker's sex did not reveal any
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recognition preferences, and is not shown
here.

A second set of recognition
experiments were conducted to study the
effect of the two noise factors: additive
noise and Lombard effect. A subset of
data (2 speakers) from the 8 speaker data
were corrupted by digitally adding F-16
noise at different levels to produce
various signal—to—noise (SNR) ratios. The
substitution rates obtained at three
different SNR's are compared with the
NOISE EXPOSURE condition of 95 dB pink
noise in Table 2. It is seen that the
changes in speech production attributable
to noise degrade far more than the effects
of additive noise. The additive noise
results appear to be in general agreement
with the results in [3]. Table 3 shows
the measured SNR for various noise level
in dB SPL for the data base in [3]. It is
seen that the SNR even at 112 dB SPL is on
the order of 20 dB, which is not too
unfavorable to recognition algorithms.

5. CONCLUSION

The performance of a baseline
recognition scheme (PSC) was determined
with a data base showing significant
acoustic variabilities. Enhancing the
feature vector with energy measurements
(PFV) and describing the signal with finer
temporal quantization (10 ms frame period)
improved the baseline performance. Yet
the error rate under stress conditions is
roughly ten times worse, worse than under
normal conditions. Experience with
speaker independent recognition [7] of
isolated digits shows that comprehending
the spectral dynamics and defining
features that are specific to the
hypothesized acoustic event can be very
beneficial in accommodating acoustic
variability of speech signals. Such an
approach appears worth investigating for
handling stress conditions.

Experiments with additive noise and
Lombard effect have shown the relative
influence of noise on recognition. In
particular, the psychological effect of
noise on speech production degraded
recognition performance far more than the
additive effect of combining noise and
speech signals.
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Figure 1: Wideband Spectrograms for the word 'Zero" spoken by an adult male under
different ''stress'' conditions. '1—axis scale is 0 — 4 kIlz, and X—axis is time
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Figure 2: Block Diagram of the Principal Spectral Components Recognition
Scheme

RESULTS FOR
TABLE 1

THE VARIOUS ALGORITHMS
DATA BASE: 105 WORDS,

SUBSTITUTION RATE

AND THEIR VARIATIONS
8 SPKRS

(%)

EXPERIMENT NORM FAST LOUD NOISE SOFT SHOUT

PSC METRIC
20 MS
FRAME PERIOD

1.1 10.2 24.4 13.8 11.9 78.4

PFV METRIC
20 MS
FRAME PERIOD

1.0 7.9 19.3 9.4 4.9 74.5

PFV METRIC
10 MS
FRAME PERIOD

0.9 6.0 17.7 7.3 4.3 74.3

AVG. LEVEL
RELATIVE TO
NORMAL (DB) 0 4 13 9 —14 25

TABLE 2
SUBSTITUTION RATES(%) FOR ADDITIVE NOISE VS. LOMBARD EFFECT

NORM SNR=3O dB SNR=2O dB SNR=1O dB LOMBARD EFFECT
(95 dB Pink Noise)

1.1 1.1 2,8 11.6 13.8

TABLE 3
MEASURED VALUES OF SIGNAL TO NOISE RATIO FOR SEVERE NOISE ENVIRONMENTS

AFTI/F-16 NOISE, M1O1 MICROPHONE WITH OXYGEN MASK AND REGULATOR

AMBIENT NOISE LEVEL (dB SPL)
SUBJECT ENROLL _____________TEST________

85 97 106 112

BK 35
CH 37
OW 38
HH 24
KB 33
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34
33
32
23
29

26
26
25
17
26

22
21
20
16
20


